Skip to main content
Log in

Quantum Routing for Single Plasmons Modulated by the Dipole–Dipole Interaction in a π-Shaped Channel

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We theoretically investigate a new scheme of single plasmon (SP) quantum router with a π-shaped channel consisting of two quantum dots (QDs) and three plasmonic waveguides (PWs), where the two QDs are coupled to the junctions where the infinite PW is junctioned to the other two semi-infinite PWs. Based on the real-space approach, we show that the proposed hybrid system can operate as a SP router. Our results show that SPs can be routed from one channel to the other channels by adjusting such parameters as the detuning, the distance between the QDs and the coupling strengths between the QDs and the PWs. We also show that the dipole–dipole interaction (DDI) between the QDs influences greatly both the position and height of the scattering peaks. Based on the obtained characteristics, the proposed scheme could be utilized for designing and realizing quantum devices, such as quantum switches, directional couplers and multiport quantum routers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All the references cited are available. All data and material considered in this paper are transparent.

Code Availability

Authors have used Mathematica10.0 as software applications.

References

  1. H.J. Kimble, The quantum internet. Nature (London) 453, 1023–1030 (2008)

    Article  ADS  Google Scholar 

  2. D.E. Chang, A.S. Sorensen, E.A. Demler, M.D. Lukin, A single-photon transistor using nano-scale surface plasmons. Nat. Phys. 3, 807–812 (2007)

    Article  Google Scholar 

  3. J.T. Shen, S. Fan, Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom. Phys. Rev. A79 (2), 023837 (2009).

  4. N.C. Kim, J.B. Li, Z.J. Yang, Z.H. Hao, and Q.Q. Wang, Switching of a single propagating plasmon by two quantum dots system, Appl. Phys. Lett. 97, 061110 (2010).

  5. M.T. Cheng, Y.Y. Song, Fano resonance analysis in a pair of semiconductor quantum dots coupling to a metal nanowire. Opt. Lett. 37, 978–980 (2012)

    Article  ADS  Google Scholar 

  6. N.C. Kim, M.C. Ko, Q.Q. Wang, Single Plasmon Switching with n Quantum Dots System Coupled to One-Dimensional Waveguide. Plasmonics (Springer) 10(3), 611–615 (2015)

    Article  Google Scholar 

  7. N.C. Kim, M.C. Ko, S.I. Choe, Z.H. Hao, L. Zhou, J.B. Li, S.J. Im, Y.H. Ko, C.G. Jo, Q.Q. Wang, Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle semiconductor quantum dot system coupled to a plasmonic waveguide. Nanotechnology 27, 465703 (2016).

  8. N. Wu, C. Zhang, X.R. Jin, Y.Q. Zhang, Y.P. Lee, Unidirectional reflectionless phenomena in non-Hermitian quantum system of quantum dots coupled to a plasmonic waveguide. Opt. Express 26, 3839–3849 (2018)

    Article  ADS  Google Scholar 

  9. M. Ahumada, P. A. Orellana, F. Domínguez-Adame, and A. V. Malyshev, Tunable single-photon quantum router, Phys. Rev. A 99, 033827 (2019).

  10. T. Aoki, A.S. Parkins, D.J. Alton, C.A. Regal, B. Dayan, E. Ostby, K.J. Vahala, H.J. Kimble, Efficient routing of single photons with one atom and a microtoroidal cavity. Phys. Rev. Lett. 102(8), 083601 (2009).

  11. G.S. Agarwal, S. Huang, Optomechanical systems as single-photon routers. Phys. Rev. A85(2), 021801 (2012).

  12. L. Zhou, L.P. Yang, Y. Li, and C.P. Sun, Quantum routing of single photons with a cyclic three-level system, Phys. Rev. Lett. 111, 103604 (2013).

  13. J. Lu, L. Zhou, L. Kuang, F. Nori, Single-photon router: coherent control of multi-channel scattering for single-photons with quantum interferences. Phys. Rev. A89(1), 013805 (2014).

  14. I. Shomroni, S. Rosenblum, Y. Lovsky, O. Brechler, G. Guendelman, B. Dayan, All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345(6199), 903–906 (2014)

    Article  ADS  Google Scholar 

  15. C. Gonzalez-Ballestero, E. Moreno, F.J. Garcia-Vidal, A. Gonzalez-Tudela, Nonreciprocal few photon routing schemes based on chiral waveguide–emitter couplings. Phys. Rev. A94(6), 063817 (2016).

  16. M.T. Cheng, X.S. Ma, J.Y. Zhang, B. Wang, Single photon transport in two waveguides chirally coupled by a quantum emitter. Opt. Express 24(17), 19988–19993 (2016)

    Article  ADS  Google Scholar 

  17. X. Li, W.Z. Zhang, B. Xiong, L. Zhou, Single-photon multi-ports router based on the coupled cavity optomechanical system. Sci. Rep. 6, 39343 (2016)

    Article  ADS  Google Scholar 

  18. C.H. Yan, Y. Li, H. Yuan, L.F. Wei, Targeted photonic routers with chiral photon–atom interactions. Phys. Rev. A 97(2), 023821 (2018).

  19. J.S. Huang, J.W. Wang, Y. Wang, Y.L. Li, Y.W. Huang, Control of single-photon routing in a T-shaped waveguide by another atom. Quantum Inf. Process. 17, 78 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  20. Y.X. Shi, H.Y. Wang, J.L. Ma, Q. Li, L. Tan, Coherent control of the single-photon multichannel scattering in the dissipation case. Eur. Phys. J. D 72, 46 (2018)

    Article  ADS  Google Scholar 

  21. X.X. Yuan, J.J. Ma, P.Y. Hou, X.Y. Chang, C. Zu, L.M. Duan, Experimental demonstration of a quantum router. Sci. Rep. 5, 12452 (2015)

    Article  ADS  Google Scholar 

  22. X. Yang, J.J. Hou, C. Wu, Single-Photon Routing for a L-Shaped Channel. Int J Theor Phys 57, 602–608 (2018)

    Article  Google Scholar 

  23. J.S. Huang, J.W. Wang, Y.L. Li, Y. Wang, Y.W. Huang, Tunable quantum routing via asymmetric intercavity couplings. Quantum Inf. Process. 18, 59 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  24. M.C. Ko, N.C. Kim, S.R. Ri, J.S. Ryom, S.I. Choe, I.H. Choe, Y.C. Kim, G.I. An, Designable quantum beam splitter using the two-level InGaAs quantum dot interacting with a Y-Type plasmonic waveguide. Int. J. Mod. Phys. B 34(21), 2050213 (2020)

    Article  ADS  Google Scholar 

  25. A. Reiserer, G. Rempe, Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379–1418 (2015)

    Article  ADS  Google Scholar 

  26. J.D. Thompson, T.G. Tiecke, N.P. de Leon, J. Feist, A.V. Akimov, M. Gullans, A.S. Zibrov, V. Vuletić, M.D. Lukin, Coupling a single trapped atom to a nanoscale optical cavity. Science 340, 1202–1205 (2013)

    Article  ADS  Google Scholar 

  27. S. Mahmoodian, S. Stobbe, Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  28. A. Sipahigil, R.E. Evans, D.D. Sukachev, M.J. Burek, J. Borregaard, M.K. Bhaskar, C.T. Nguyen, J.L. Pacheco, H.A. Atikian, C. Meuwly, R.M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, M.D. Lukin, An integrated diamond nanophotonics platform for quantum optical networks. Science 354, 847–850 (2016)

    Article  ADS  Google Scholar 

  29. G.A. Yan, Q.Y. Cai, A.X. Chen, Information-holding quantum router of single photons using natural atom. Eur. Phys. J. D 70, 93 (2016)

    Article  ADS  Google Scholar 

  30. J. Lu, Z.H. Wang, L. Zhou, T-shaped single-photon router. Opt. Express 23(18), 22955 (2015)

    Article  ADS  Google Scholar 

  31. I.C. Hoi, C.M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, P. Delsing, Demonstration of a single-photon router in the microwave regime. Phys. Rev. Lett. 107 (7), 073601 (2011).

  32. S. Kumar, N.I. Kristiansen, A. Huck, U.L. Andersen, Generation and Controlled Routing of Single Plasmons on a Chip. Nano Lett. 14, 663–669 (2014)

    Article  ADS  Google Scholar 

  33. H. Siampour, S. Kumar, S.I. Bozhevolnyi, Nanofabrication of Plasmonic Circuits Containing Single Photon Sources. ACS Photonics 4, 1879–1884 (2017)

    Article  Google Scholar 

  34. X.M. Li, L.F. Wei, Ideal photonic absorption, emission, and routings in chiral waveguides. Opt. Commun. 425, 13–18 (2018)

    Article  ADS  Google Scholar 

  35. M.C. Ko, N.C. Kim, H. Choe, A single plasmon router based on the V-type three-level quantum dot sandwiched between two plasmonic waveguides, Physica Scripta, 94, 125605(5pp) (2019).

  36. H. Wang, S.Q. Liu, J.Z. He, Phys. Rev. E 79, 041113(2009).

  37. N.C. Kim, M.C. Ko, J.S. Ryom, H. Choe, I.H. Choe, S.R. Ri, S.G. Kim, Single Plasmon Router with Two Quantum Dots Side Coupled to Two Plasmonic Waveguides with a Junction, Quantum Information Process. 20(5). https://doi.org/10.1007/S11128-020-02884-2 (2021).

  38. L. Tan, Y.Q. Zhang, W.M. Liu, Phys. Rev. A 84, 063816 (2011).

  39. M.T. Cheng, J.P. Xu, G. S. Agarwal, Waveguide transport mediated by strong coupling with atoms. Phys. Rev. A, 95(5):053807 (2017).

Download references

Acknowledgments

This work was supported by the National Program on Key Project for Frontier Research on Quantum Information and Quantum Optics of Democratic People's Republic of Korea.

Funding

There is no funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors have the same contributions.

Corresponding author

Correspondence to Nam-Chol Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics Approval

The submitted work is original and has not been published elsewhere in any form or language (partially or in full).

Consent to Participate

All authors consent to participate.

Consent to Publish

All authors consent to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SG., Kim, NC., Ko, MC. et al. Quantum Routing for Single Plasmons Modulated by the Dipole–Dipole Interaction in a π-Shaped Channel. J Low Temp Phys 207, 58–70 (2022). https://doi.org/10.1007/s10909-022-02698-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02698-9

Keywords

Navigation