Skip to main content

Advertisement

Log in

Characterization of Multi-field Behaviors on Fatigue Damage Due to High Cyclic Loading in YBCO-Coated Conductors Fabricated by the IBAD-PLD Technology

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In practice, yttrium barium copper oxide (YBCO) tapes often experience different types of fatigue loadings including continuous winding stress, repeated thermal cycles, and periodic electromagnetic force, consequently resulting in a poor performance. Based on cyclic loading tests in the structural design of some large YBCO superconducting devices, a 95% critical current (Ic) retention tensile stress criterion was proposed. Although the relationship between critical current and stress/strain has been extensively studied by some research teams, the effects of fatigue loading on macro-behavior, microstructure, and electromechanical responses have not been much reported. In this paper, the tapes were made using ion-beam-assisted deposition combined with pulsed laser deposition. Under the self-field, they were subjected to many cycles of axial loading to test their fatigue behavior. In this work, first, we report the effects of fatigue numbers on YBCO tapes’ tensile responses (e.g., Tensile Strengths) and electromechanical behaviors. Macro-behavior measurements showed that the mechanical behaviors and their electromechanical degradation of YBCO superconducting tapes depended on the number of fatigue loading cycles. Then, fracture surface morphologies of YBCO tapes’ superconducting layer and Hastelloy layer were also investigated with scanning electron microscope and energy-dispersive X-ray spectroscopy. It was found that the width of scratch lines and the size of fatigue defects on Hastelloy layer were increased with the number of fatigue cycles, which was the main cause of the degradation of mechanical properties. Moreover, observations of the microstructure conducted on the YBCO layer demonstrated that it was the crack motion and evolution that led to the current degradation under fatigue loading. During the process of fatigue loading, the small fatigue cracks become big with the increasing fatigue number. Lastly, a critical current-strain model of the fatigued HTS tapes, that combines the Ekin power-law formula and the Weibull distribution function, is proposed. This model can predict the electromechanical property of fatigued YBCO tapes under uniaxial tensile strain well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Hahn, K. Kim, K. Kim, X.B. Hu, T. Painter, I. Dixon, S. Kim, K.R. Bhattarai, S. Noguchi, J. Jaroszynski, D.C. Larbalestier, Nature 570, 496 (2019)

    Article  ADS  Google Scholar 

  2. T. Holesinger et al., Adv. Mater 20, 391–407 (2008)

    Article  Google Scholar 

  3. M.W. Rupich et al., Supercond. Sci. Technol 23, 014015 (2010)

    Article  ADS  Google Scholar 

  4. V. Selvamanickam et al., IEEE Trans. Appl. Supercond 19, 3225–3230 (2009)

    Article  ADS  Google Scholar 

  5. Y. Wang, W.K. Chan, J. Schwartz, Supercond. Sci. Technol 29, 045007 (2016)

    Article  ADS  Google Scholar 

  6. H.W. Weijers, W.D. Markiewicz, A.V. Gavrilin, A.J. Voran, Y.L. Viouchkov, S.R. Gundlach, P.D. Noyes, D.V. Abraimov, H. Bai, S.T. Hannahs, T.P. Murphy, IEEE Trans. Appl. Supercond 26, 4300807 (2016)

    Article  Google Scholar 

  7. Y. Sangwon, K. Jaemin, L. Hunju, H. Seungyong, M. Seung-Hyun, Supercond. Sci. Technol 29, 04LT04 (2016)

    Article  Google Scholar 

  8. S. Awaji, K. Watanabe, H. Oguro, H. Miyazaki, S. Hanai, T. Tosaka, S. Ioka, Supercond. Sci. Technol 30, 065001 (2017)

    Article  ADS  Google Scholar 

  9. Y.W. Wang, M. Zhang, F. Grilli, Z.X. Zhu, W.J. Yuan, Supercond. Sci. Technol. 32, 025003 (2019)

    Article  ADS  Google Scholar 

  10. W.H. Gray, J.K. Ballou, Appl. Phys 48, 3100–3109 (1977)

    Article  Google Scholar 

  11. P.K. Husek, H. Jones, Supercond. Sci. Technol. 17, 1411–1414 (2004)

    Article  ADS  Google Scholar 

  12. M. Lefik, D.P. Boso, B.A. Schrefler, Comput. Methods Appl. Mech. Eng 198, 1785–1804 (2009)

    Article  ADS  Google Scholar 

  13. C. Xin, M. Guan, Supercond. Novel Magn 32, 175–183 (2018)

    Article  Google Scholar 

  14. N. Cheggour, D.P. Hampshire, Rev. Sci. Instrum 71, 4521–4530 (2000)

    Article  ADS  Google Scholar 

  15. P. Sunwong, J.S. Higgins, D.P. Hampshire, Rev. Sci. Instrum 85, 065111 (2014)

    Article  ADS  Google Scholar 

  16. M. Sugano et al., Supercond. Sci. Technol 21, 115019 (2008)

    Article  ADS  Google Scholar 

  17. N. Cheggour, J. Ekin, C. Clickner, D. Verebelyi, L. Thieme, R. Feenstra, A. Goyal, Appl. Phys. Lett 83, 4223 (2003)

    Article  ADS  Google Scholar 

  18. T. Qu, Z. Han, R. Flukiger, Physica C 444, 71–77 (2006)

    Article  ADS  Google Scholar 

  19. T. Qu, C. Gu, K. Huang, H. Song, P. Zeng, Z. Han, IEEE Trans. Appl. Supercond 21, 2832–2838 (2011)

    Article  ADS  Google Scholar 

  20. W. Chen, H. Zhang et al., IEEE Trans. Appl. Supercond 28, 8400905 (2018)

    Google Scholar 

  21. E.F. Talantsev, R.A. Badcock et al., Supercond. Sci. Technol. 30, 045014 (2017)

    Article  ADS  Google Scholar 

  22. D.C. van der Laan, D.M. McRae, J.D. Weiss, Supercond. Sci. Technol. 32, 015002 (2019)

    Article  ADS  Google Scholar 

  23. W. Chen, H. Zhang et al., Cryogenics 94, 1–4 (2018)

    Article  ADS  Google Scholar 

  24. H.S. Shin, M.J. Dedicatoria, Cryogenics 51, 237–240 (2011)

    Article  ADS  Google Scholar 

  25. J.W. Ekin et al., IEEE Trans. Appl. Supercond 11, 3389–3392 (2001)

    Article  ADS  Google Scholar 

  26. S. Rogers, J. Schwartz, Supercond. Sci. Technol. 30, 045013 (2017)

    Article  ADS  Google Scholar 

  27. M. Sugano, Y. Yoshida et al., Supercond. Sci. Technol. 21, 054006 (2008)

    Article  ADS  Google Scholar 

  28. H. Shin, J. Dizon, K. Kim et al., Cryogenics 46, 378–384 (2006)

    Article  ADS  Google Scholar 

  29. M. Hojo, K. Osawa, T. Adachi et al., Physica C 470, 1373–1376 (2010)

    Article  ADS  Google Scholar 

  30. N. Bykovsky, D. Uglietti, R. Wesche, P. Bruzzone, IEEE Trans. Appl. Supercond. 26, 4201207 (2016)

    Google Scholar 

  31. L. Mbaruku et al., IEEE Trans. Appl. Supercond. 13, 3522–3525 (2003)

    Article  ADS  Google Scholar 

  32. D. Ryan, L. Li, X. Huang et al., IEEE Trans. Appl. Supercond 15, 3684–3687 (2005)

    Article  ADS  Google Scholar 

  33. M. Guan, S. Hahn, J. Bascuñán, X. Wang, P. Gao, Y. Zhou, Y. Iwasa, IEEE Trans. Appl. Supercond 26, 430120 (2016)

    Google Scholar 

  34. K. Ilin, K. Yagotintsev, C. Zhou et al., Supercond. Sci. Technol 28, 055006 (2015)

    Article  ADS  Google Scholar 

  35. P. Gao, W.-K. Chan, X. Wang et al., Supercond. Sci. Technol 33, 044015 (2020)

    Article  ADS  Google Scholar 

  36. K. Osamura, M. Sugano et al., Supercond. Sci. Technol. 22, 065001 (2009)

    Article  ADS  Google Scholar 

  37. P. Gao, W.-K. Chan, X. Wang, J. Schwartz, Supercond. Sci. Technol. 31, 074004 (2018)

    Article  ADS  Google Scholar 

  38. J. Majkic, R.J. Mensah et al., IEEE Trans. Appl. Supercond 19, 3003–3008 (2009)

    Article  ADS  Google Scholar 

  39. H.S. Shin et al., IEEE Trans. Appl. Supercond. 15, 3556–3559 (2005)

    Article  ADS  Google Scholar 

  40. R.P. Walsh, D. Mcrae, W.D. Markiewicz, J. Lu, V.J. Toplosky, IEEE Trans. Appl. Supercond 22, 8400406 (2012)

    Article  Google Scholar 

  41. Y. Oda et al., Int. J. Fract. 113, 213–2313 (2002)

    Article  Google Scholar 

  42. J.W. Ekin, Adv. Cryog. Eng. 30, 823–836 (1984)

    Google Scholar 

  43. D.C. van der Laan, T.J. Haugan, P.N. Barnes, Phys. Rev. Lett 103, 027005 (2009)

    Article  ADS  Google Scholar 

  44. M.Q. Le, H. Song, J. Schwartz, Supercond. Sci. Technol. 23, 115014 (2010)

    Article  ADS  Google Scholar 

  45. P. Gao, X. Wang, Chin. Phys. Lett 31, 047401 (2014)

    Article  ADS  Google Scholar 

  46. P. Gao, C. Xin, M. Guan, X. Wang, Y. Zhou, IEEE Trans. Appl. Supercon 26, 1–5 (2016)

    Google Scholar 

  47. P. Gao, X. Wang, Int. J. Mech. Sci 141, 401–407 (2018)

    Article  Google Scholar 

  48. P. Gao, X. Wang, Y. Zhou, Supercond. Sci. Technol. 32, 034003 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (12172357), the Youth Innovation Promotion Association CAS (2019404), CAS “Light of West China” Program (2018). We also thank the support of Prof. X. Wang in discussing on multi-field measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingzhi Guan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Guan, M. Characterization of Multi-field Behaviors on Fatigue Damage Due to High Cyclic Loading in YBCO-Coated Conductors Fabricated by the IBAD-PLD Technology. J Low Temp Phys 207, 97–114 (2022). https://doi.org/10.1007/s10909-022-02693-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02693-0

Keywords

Navigation