Skip to main content
Log in

Cost of Energy Quantum Correlation in a Spin Model

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Identification of quantum phase transitions has been a long standing issue in quantum systems. In this work, we study the renormalization of Wigner–Yanase skew information in XY spin chain and compare its relation with cost of energy quantum correlation near the critical point. This study is presented by implementing the quantum renormalization group (RG) technique. We apply the (RG) method to examine existing phase transition in XY spin chain by using the cost of energy quantum correlations and Wigner–Yanase skew information. We demonstrate that cost of energy quantum can provide crucial information about quantum phase transitions as well as quantum correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M. Kargarian, R. Jafari, A. Langari, Phys. Rev. A 76, 06030 (2007)

    Article  Google Scholar 

  2. M. Kargarian, R. Jafari, A. Langari, Phys. Rev. A 77, 032346 (2008)

    Article  ADS  Google Scholar 

  3. A. Langari, F. Pollmann, M. Siahatgar, J. Phys, Condens. Matter 25, 406002 (2013)

    Article  Google Scholar 

  4. Y.L. Xu, X.M. Kong, Z.Q. Liu, C.Y. Wang, Quantum entanglement and quantum phase transition for the Ising model on a two-dimension square lattice. Physica A 446, 217 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Osterloh, L. Amico, G. Falci, R. Fazio, Scaling of entanglement close to a quantum phase transitions. Nature 416, 608 (2002)

    Article  ADS  Google Scholar 

  6. L. Lima, Effect of spin-phonon coupling on quantum correlation in the spin-1 XY model. Solid State Commun. 332, 114323 (2021)

    Article  Google Scholar 

  7. L.S. Lima, Influence of Dzyaloshinskii–Moriya interaction and external fields on quantum entanglement in half-integer spin one-dimensional antiferromagnets. Eur. Phys. J. D 73(11), 1–7 (2019)

    Article  ADS  Google Scholar 

  8. A.R. Its, B.-Q. Jin, V.E. Korepin, Entanglement in the XY spin chain. J. Phys. A Math. Gen. 38(13), 2975 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. P. Calabrese, J. Cardy, Entanglement entropy and quantum field theory. J. Stat. Mech. Theory Exp. 2004(06), P06002 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Haddadi, M. Ghominejad, A. Akhound, M.R. Pourkarimi, Entropic uncertainty relation and quantum coherence under Ising model with Dzyaloshinskii–Moriya interaction. Laser Phys. Lett. 18(8), 085204 (2021)

    Article  ADS  Google Scholar 

  11. S. Haseli, S. Haddadi, M.R. Pourkarimi, Entropic uncertainty lower bound for a two-qubit system coupled to a spin chain with Dzyaloshinskii–Moriya interaction. Opt. Quantum Electron. 52(10), 1–14 (2020)

    Article  Google Scholar 

  12. F. Mirmasoudi, S. Ahadpour, J. Vahedi, S. Mahdavifar, The Loschmidt-echo dynamics in a quantum chaos model. Phys. Scr. 94(5), 055207 (2019)

    Article  ADS  Google Scholar 

  13. S. Moshfegh, A. Ashouri, S. Mahdavifar, J. Vahedi, Integrable-chaos crossover in the spin-1/ 2 xxz chain with cluster interaction. Phys. A Stat. Mech. Appl. 516, 502–508 (2019)

    Article  MathSciNet  Google Scholar 

  14. A. Ashouri, S. Mahdavifar, G. Misguich, J. Vahedi, Concurrence and quantum discord in the eigenstates of chaotic and integrable spin chains. Ann. Phys. 532(8), 1900515 (2020)

    Article  MathSciNet  Google Scholar 

  15. G. Vidal, J.I. Latorre, E. Rico, A. Kitaev, Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90(22), 227902 (2003)

    Article  ADS  Google Scholar 

  16. T. Werlang, C. Trippe, G.A.P. Ribeiro, G. Rigolin, Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010)

    Article  ADS  Google Scholar 

  17. H. Ollivier, W. Zurek, Phys. Rev. Lett 88, 017901 (2001)

    Article  ADS  Google Scholar 

  18. M. Ali, A.R.P. Rau, G. Alber, Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  19. X.X. Zhang, H.R. Li, The renormalization of geometric quantum discord in the transverse Ising model. Mod. Phys. Lett. B 29, 1550002 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  20. P. Zanardi, N. Paunkovic, Ground state overlap and quantum phase transitions. Phys. Rev. E 74, 031123 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  21. G.Q. Zhang, J.B. Xu, Quantum coherence of an XY spin chain with Dzyaloshinskii–Moriya interaction and quantum phase transition. J. Phys. A Math. Theor. 50, 13 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. N. Behzadi, E. Soltani, E. Faizi, Thermodynamic cost of creating global quantum discord and local quantum uncertainty. Int. J. Theor. Phys. 57(10), 3207–3214 (2018)

    Article  MATH  Google Scholar 

  23. K. Maruyama, F. Nori, V. Vedral, Colloquium: the physics of Maxwell’s demon and information. Rev. Mod. Phys. 81(1), 1 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. M. Horodecki, J. Oppenheim, Fundamental limitations for quantum and nanoscale thermodynamics. Nat. Commun. 4(1), 1–6 (2013)

    Article  Google Scholar 

  25. L. Del Rio, J. Åberg, R. Renner, O. Dahlsten, V. Vedral, The thermodynamic meaning of negative entropy. Nature 474(7349), 61–63 (2011)

    Article  Google Scholar 

  26. M. Horodecki, J. Oppenheim, (Quantumness in the context of) resource theories. Int. J. Mod. Phys. B 27(01n03), 1345019 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. M. Huber, M. Perarnau-Llobet, K.V. Hovhannisyan, P. Skrzypczyk, C. Klöckl, N. Brunner, A. Acín, Thermodynamic cost of creating correlations. New J. Phys. 17(6), 065008 (2015)

    Article  MATH  ADS  Google Scholar 

  28. M. A. Nielsen, I. Chuang, Quantum computation and quantum information (2002)

  29. A.K. Ekert, Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. S. Mirzaei, A.R. Akbarieh, Quantum teleportation via entangled state of light in Schwarzschild black hole. Int. J. Theor. Phys. 59(11), 3583–3592 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. C.H. Bennett, S.J. Wiesner, Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. S. Ahadpour, F. Mirmasoudi, Super dense coding in one-axis twisting model. Rev. Mex. Fís. 66(3 May–Jun), 356–363 (2020)

    Article  MathSciNet  Google Scholar 

  34. A. Barenco, A.K. Ekert, Dense coding based on quantum entanglement. J. Mod. Opt. 42(6), 1253–1259 (1995)

    Article  ADS  Google Scholar 

  35. S.L. Braunstein, H.J. Kimble, Dense coding for continuous variables, in Quantum Information with Continuous Variables (Springer, 2000), pp. 95–103

  36. S. Bose, M.B. Plenio, V. Vedral, Mixed state dense coding and its relation to entanglement measures. J. Mod. Opt. 47(2–3), 291–310 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  37. F. Mirmasoudi, S. Ahadpour, Dynamics of super quantum discord and optimal dense coding in quantum channels. J. Phys. A Math. Theor. 51(34), 345302 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. F. Mirmasoudi, S. Ahadpour, Application quantum renormalization group to optimal dense coding in transverse Ising model. Phys. A Stat. Mech. Appl. 515, 232–239 (2019)

    Article  MathSciNet  Google Scholar 

  39. K. Mattle, H. Weinfurter, P.G. Kwiat, A. Zeilinger, Dense coding in experimental quantum communication. Phys. Rev. Lett. 76(25), 4656 (1996)

    Article  ADS  Google Scholar 

  40. J.I. Latorre, E. Rico, G. Vidal, Ground state entanglement in quantum spin chains. arXiv:quant-ph/0304098 (2003)

  41. J. Latorre, A. Riera, A short review on entanglement in quantum spin systems. J. Phys. Math. Theor. 42(50), 504002 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. S. Haddadi, M. Bohloul, A brief overview of bipartite and multipartite entanglement measures. Int. J. Theor. Phys. 57(12), 3912–3916 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. M.-L. Hu, X. Hu, J. Wang, Y. Peng, Y.-R. Zhang, H. Fan, Quantum coherence and geometric quantum discord. Phys. Rep. 762, 1–100 (2018)

    MathSciNet  MATH  ADS  Google Scholar 

  44. S. Szalay, Multipartite entanglement measures. Phys. Rev. A 92(4), 042239 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  45. Y. Khedif, S. Haddadi, M.R. Pourkarimi, M. Daoud, Thermal correlations and entropic uncertainty in a two-spin system under DM and KSEA interactions. Mod. Phys. Lett. A 36(29), 2150209 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  46. M.G. Paris, Quantum estimation for quantum technology. Int. J. Quantum Inf. 7(supp01), 125–137 (2009)

    Article  MATH  Google Scholar 

  47. S. Luo, S. Fu, Geometric measure of quantum discord. Phys. Rev. A 82(3), 034302 (2010)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  48. M. Kargarian, R. Jafari, A. Langari, Renormalization of entanglement in the anisotropic Heisenberg (x x z) model. Phys. Rev. A 77(3), 032346 (2008)

    Article  ADS  Google Scholar 

  49. E.P. Wigner, M.M. Yanase, Information contents of distributions, in Part I: Particles and Fields. Part II: Foundations of Quantum Mechanics (Springer, 1997), pp. 452–460

  50. D. Girolami, T. Tufarelli, G. Adesso, Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110(24), 240402 (2013)

    Article  ADS  Google Scholar 

Download references

Funding

Funding was provided by University of Mohaghegh Ardabili.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sodeif Ahadpour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahadpour, S., Mirmasoudi, F. Cost of Energy Quantum Correlation in a Spin Model. J Low Temp Phys 207, 1–10 (2022). https://doi.org/10.1007/s10909-022-02692-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02692-1

Keywords

PACS numbers

Navigation