Skip to main content
Log in

Negative Magnetization Effect in Distorted Honeycomb Ni4Nb2O9 Ceramics

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Negative magnetization effect in the quasi-two-dimensional distorted honeycomb-layered Ni4Nb2O9 ceramics is revealed through rigorous magnetic measurements. Owing to the different degrees of distortion, the Ni–Ni honeycomb layers with antiferromagnetic interlayered coupling demonstrate two types of temperature dependences, resulting in a negative magnetization effect. Here we report the structure, magnetism, magnetic switching effect and magnetocaloric effect in Ni4Nb2O9 compound, synthesized by the solid-state reaction method. The magnetization curves display a ferrimagnetic behavior with a critical temperature of 76 K. The negative magnetization state occurs at 32 K which can be ascribed to the different temperature dependence of two distorted honeycomb layers. Besides, the tunable magnetic switching effect can be obtained by changing the temperature or magnitude of the external field that shows the potential application prospects. These results provide a new platform and understanding of the negative magnetization effect in these series of materials which consist of antiferromagnetic coupling sublattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Figure 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. L. Néel, Ann. Phys. Paris 3, 137–198 (1948)

    Article  ADS  Google Scholar 

  2. A. Kumar, S.M. Yusuf, Phys. Rep. 556, 1–34 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  3. S. Biswas, S. Pal, Rev. Adv. Mater. Sci. 53, 206–217 (2018)

    Article  Google Scholar 

  4. M. Ghanathe, A. Kumar, S.M. Yusuf, J. Appl. Phys. 125, 093903 (2019)

    Article  ADS  Google Scholar 

  5. Y. Ren, T.T.M. Palstra, D.I. Khomskii, E. Pellegrin, A.A. Nugroho, A.A. Menovsky, G.A. Sawatzky, Nature 396, 441 (1998)

    Article  ADS  Google Scholar 

  6. Y. Ren, T.T.M. Palstra, D.I. Khomskii, A.A. Nugroho, A.A. Menovsky, G.A. Sawatzky, Phys. Rev. B 62, 6577 (2000)

    Article  ADS  Google Scholar 

  7. N. Menyuk, K. Dwight, D. Wickham, Phys. Rev. Lett. 4, 119 (1960)

    Article  ADS  Google Scholar 

  8. Y. Fang, Y.Q. Song, W.P. Zhou, R. Zhao, R.J. Tang, H. Yang, L.Y. Lv, S.G. Yang, D.H. Wang, Y.W. Du, Sci. Rep. 4, 3860 (2015)

    Article  Google Scholar 

  9. N. Narayanan, A. Senyshyn, D. Mikhailova, T. Faske, T. Lu, Z. Liu, B. Weise, H. Ehrenberg, R.A. Mole, W.D. Hutchison, H. Fuess, G.J. McIntyre, Y. Liu, D. Yu, Phys. Rev. B 98, 134438 (2018)

    Article  ADS  Google Scholar 

  10. S.N. Panja, L. Harnagea, J. Kumar, I.P.K. Mukharjee, R. Nath, A.K. Nigam, S. Nair, Phys. Rev. B 98, 024410 (2018)

    Article  ADS  Google Scholar 

  11. A. Maignan, C. Martin, Phys. Rev. B 97, 161106 (2018)

    Article  ADS  Google Scholar 

  12. N.D. Khanh, N. Abe, H. Sagayama, A. Nakao, T. Hanashima, R. Kiyanagi, Y. Tokunaga, T. Arima, Phys. Rev. B 93, 075117 (2016)

    Article  ADS  Google Scholar 

  13. G. Deng, Y. Yu, Y. Cao, Z. Feng, W. Ren, S. Cao, A.J. Studer, J.R. Hester, Y. Kareri, C. Ulrich, G.J. McIntyre, J. Phys.: Condens. Matter 31, 235801 (2019)

    ADS  Google Scholar 

  14. G.C. Deng, Y.M. Cao, W. Ren, S.X. Cao, A.J. Studer, N. Gauthier, M. Kenzelmann, G. Davidson, K.C. Rule, J.S. Gardner, P. Imperia, C. Ulrich, G.J. McIntyre, Phys. Rev. B 97, 085154 (2018)

    Article  ADS  Google Scholar 

  15. E. Tailleur, C. Martin, F. Damay, F. Fauth, A. Maignan, J. Appl. Phys. 127, 063902 (2020)

    Article  ADS  Google Scholar 

  16. M. Hase, V.Y. Pomjakushin, V. Sikolenko, L. Keller, H. Luetkens, A. Donni, H. Kitazawa, Phys. Rev. B 84, 104402 (2011)

    Article  ADS  Google Scholar 

  17. Q.S. Fu, X.H. Chen, C. Chakrabarti, C.L. Li, J. Zheng, P.J. Wang, H.X. Yin, Y. Qiu, B. Meng, S.L. Yuan, Phys. Chem. Chem. Phys 22, 7058 (2020)

    Article  Google Scholar 

  18. Z.D. Fu, H.S. Nair, Y. Xiao, A. Senyshyn, V.Y. Pomjakushin, E. Feng, Y. Su, W.T. Jin, T. Bruckel, Phys. Rev. B 94, 125150 (2016)

    Article  ADS  Google Scholar 

  19. L. Xie, H.G. Zhang, H.L. Huang, Y.L. Lu, J.Q. Yu, M.H. Li, X.Q. Tang, C. Wang, J. Alloys Compd. 772, 703–709 (2019)

    Article  Google Scholar 

  20. S. Thota, M.S. Seehra, J. Appl. Phys. 113, 203905 (2013)

    Article  ADS  Google Scholar 

  21. C.L. Li, C.L. Wang, Q.K. Lei, G.O. Barasa, Q.S. Fu, Y. Qiu, Phys. Chem. Chem. Phys. 22, 28222 (2020)

    Article  Google Scholar 

  22. R. Padam, S. Pandya, S. Ravi, S. Ramakrishnan, A.K. Nigam, A.K. Grover, D. Pal, J. Phys.: Condens. Matter 29, 055803 (2017)

    ADS  Google Scholar 

  23. C.L. Li, T.Y. Yan, G.O. Barasa, Y.H. Li, R. Zhang, Q.S. Fu, X.H. Chen, S.L. Yuan, Ceram. Int. 44, 15446–15452 (2018)

    Article  Google Scholar 

  24. L.G. Wang, C.M. Zhu, Z.M. Tian, H. Luo, D.L.G.C. Bao, S.L. Yuan, Appl. Phys. Lett. 107, 152406 (2015)

    Article  ADS  Google Scholar 

  25. H. Yamamoto, S. Sekikawa, H. Taniguchi, M. Matsukawa, K. Shigematsu, T. Honda, K. Yamauchi, K. Ikeda, T. Otomo, T. Sakakura, M. Azuma, S. Nimori, Y. Noda, H. Kimura, Appl. Phys. Lett. 117, 112404 (2020)

    Article  ADS  Google Scholar 

  26. S.M. Yusuf, A. Kumar, J.V. Yakhmi, Appl. Phys. Lett. 95, 182506 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No.11474111), Key Research Projects of Henan Provincial Department of Education (21A140024), and Nanhu Scholars Program for Young Scholars of XYNU. We would like to thank the staff of the Analysis Center of Huazhong University of Science and Technology for their help in various measurements.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 11474111), Key Research Projects of Henan Provincial Department of Education (21A140024), and Nanhu Scholars Program for Young Scholars of XYNU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Yuan.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Consent to Participate

We confirm that the manuscript has been read and approved by all named authors, and the order of authors listed in the manuscript has been approved by all of us.

Consent for Publication

We are approving to publish in journal of low-temperature physics if the manuscript can be accepted.

Ethical Approval

This manuscript, or any part of it, is original and has not been submitted previously to any other journal for reviews. The results are presented clearly, honestly, and without fabrication, falsification or inappropriate data manipulation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, B., Ji, X.T., Chen, X.H. et al. Negative Magnetization Effect in Distorted Honeycomb Ni4Nb2O9 Ceramics. J Low Temp Phys 207, 115–126 (2022). https://doi.org/10.1007/s10909-022-02682-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02682-3

Keywords

Navigation