Skip to main content
Log in

New Kind of Condensation of Bose Particles Through Stimulated Processes

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We show that stimulated scattering of an isolated system of N Bose particles with initially broad energy distribution can yield condensation of particles into excited collective state in which most of the bosons occupy one or several modes. During condensation, the total particle number and energy are conserved, while the entropy of the system grows. Onset of condensation occurs at a critical particle occupation number when spectrum narrowing due to stimulated processes overcomes spectrum broadening due to diffusion. This differs from Bose–Einstein condensation in which particles undergo condensation into the equilibrium state due to thermalization processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B.C. Crooker, B. Hebral, E.N. Smith, Y. Takano, J.D. Reppy, Superfluidity in a dilute bose gas. Phys. Rev. Lett. 51, 666 (1983)

    Article  ADS  Google Scholar 

  2. M.H.W. Chan, K.I. Blum, S.Q. Murphy, G.K.S. Wong, J.D. Reppy, Disorder and the superfluid transition in liquid \(^{4}\)He. Phys. Rev. Lett. 61, 1950 (1988)

    Article  Google Scholar 

  3. P.A. Crowell, F.W. Van Keuls, J.D. Reppy, Superfluid-insulator transition in \(^{4}\)He films adsorbed in Vycor glass. Phys. Rev. Lett. 75, 1106 (1995)

    Article  Google Scholar 

  4. M.O. Scully, S. Fulling, D.M. Lee, D.N. Page, W.P. Schleich, A.A. Svidzinsky, Quantum optics approach to radiation from atoms falling into a black hole. Proc. Natl. Acad. Sci. USA. 115, 8131 (2018)

    Article  ADS  Google Scholar 

  5. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  6. K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  7. C.C. Bradley, C.A. Sackett, R.G. Hulet, Bose-Einstein condensation of lithium: observation of limited condensate number. Phys. Rev. Lett. 78, 985 (1997)

    Article  ADS  Google Scholar 

  8. H. Fröhlich, Bose condensation of strongly excited longitudinal electric modes. Phys. Let. A 26, 402 (1968)

    Article  ADS  Google Scholar 

  9. Yu. Kagan, L.A. Manakova, Condensation of phonons in an ultracold Bose gas. Phys. Lett. A 361, 401 (2007)

    Article  ADS  Google Scholar 

  10. L.V. Butov, A.L. Ivanov, A. Imamoglu, P.B. Littlewood, A.A. Shashkin, V.T. Dolgopolov, K.L. Campman, A.C. Gossard, Stimulated scattering of indirect excitons in coupled quantum wells: signature of a degenerate bose-gas of excitons. Phys. Rev. Lett. 86, 5608 (2001)

    Article  ADS  Google Scholar 

  11. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, Bose-Einstein condensation of microcavity polaritons in a trap. Science 316, 1007 (2007)

    Article  ADS  Google Scholar 

  12. H. Deng, G. Weihs, C. Santori, J. Bloch, Y. Yamamoto, Condensation of semiconductor microcavity exciton polaritons. Science 298, 199 (2002)

    Article  ADS  Google Scholar 

  13. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymańska, R. André, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dang, Bose-Einstein condensation of exciton polaritons. Nature 443, 409 (2006)

    Article  ADS  Google Scholar 

  14. J. Klaers, J. Schmitt, F. Vewinger, M. Weitz, Bose-Einstein condensation of photons in an optical microcavity. Nature 468, 545 (2010)

    Article  ADS  Google Scholar 

  15. L.A. Melnikovsky, Bose-Einstein condensation of rotons. Phys. Rev. B 84, 024525 (2011)

    Article  ADS  Google Scholar 

  16. A.S. Borovik-Romanov, Yu.M. Bunkov, V.V. Dmitriev, Yu.M. Mukharskiy, Long-lived induction signal in superfluid \(^{3}\) He-B. JETP Lett. 40, 1033 (1984)

    Google Scholar 

  17. S.O. Demokritov, V.E. Demidov, O. Dzyapko, G.A. Melkov, A.A. Serga, B. Hillebrands, A.N. Slavin, Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 443, 430 (2006)

    Article  ADS  Google Scholar 

  18. S.P. Mathew, S.N. Kaul, Bose-Einstein condensation of magnons in polycrystalline gadolinium with nano-size grains. J. Phys. Condens. Matter 23, 266003 (2011)

    Article  ADS  Google Scholar 

  19. O. Vainio, J. Ahokas, J. Järvinen, L. Lehtonen, S. Novotny, S. Sheludiakov, K.A. Suominen, S. Vasiliev, D. Zvezdov, V.V. Khmelenko, D.M. Lee, Bose-Einstein condensation of magnons in atomic hydrogen gas. Phys. Rev. Lett. 114, 125304 (2015)

    Article  ADS  Google Scholar 

  20. R. Bonifacio, L. Lugiato, Cooperative radiation processes in two-level systems: superfluorescence. Phys. Rev. A 11, 1507 (1975)

    Article  ADS  Google Scholar 

  21. G. Heinrich, M. Ludwig, J. Qian, B. Kubala, F. Marquardt, Collective dynamics in optomechanical arrays. Phys. Rev. Lett. 107, 043603 (2011)

    Article  ADS  Google Scholar 

  22. M. Zhang, S. Shah, J. Cardenas, M. Lipson, Synchronization and phase noise reduction in micromechanical oscillator arrays coupled through light. Phys. Rev. Lett. 115, 163902 (2015)

    Article  ADS  Google Scholar 

  23. J. Sheng, X. Wei, C. Yang, H. Wu, Self-organized synchronization of phonon lasers. Phys. Rev. Lett. 124, 053604 (2020)

    Article  ADS  Google Scholar 

  24. J.R. Reimers, L.K. McKemmish, R.H. McKenzie, A.E. Mark, N.S. Hush, Weak, strong, and coherent regimes of Fröhlich condensation and their applications to terahertz medicine and quantum consciousness. Proc. Nat. Acad. Sci. 106, 4219 (2009)

    Article  ADS  Google Scholar 

  25. S. Hameroff, R. Penrose, Consciousness in the universe: a review of the “Orch OR” theory. Phys. Life Rev. 11, 39 (2014)

    Article  ADS  Google Scholar 

  26. H. Fröhlich, Long-range coherence and energy storage in biological systems. Inter. J. Quant. Chem. 2, 641 (1968)

    Article  ADS  Google Scholar 

  27. H. Fröhlich, Long range coherence and the action of enzymes. Nature 228, 1093 (1970)

    Article  ADS  Google Scholar 

  28. E.J. Mueller, T.-L. Ho, M. Ueda, G. Baym, Fragmentation of Bose-Einstein condensates. Phys. Rev. A 74, 033612 (2006)

    Article  ADS  Google Scholar 

  29. M.O. Scully, A.V. Sokolov, A.A. Svidzinsky, Virtual photons: from the Lamb shift to black holes. Opt. Photon. News 29, 34 (2018)

    Article  ADS  Google Scholar 

  30. L.D. Landau, E.M. Lifshitz, Statistical Physics, 3rd Edition, Part 1 (Butterworth-Heinemann, Oxford, 1996)

    Google Scholar 

  31. M.O. Scully, W.E. Lamb Jr., Quantum theory of an optical maser. Phys. Rev. Lett. 16, 853 (1966)

    Article  ADS  Google Scholar 

  32. M.O. Scully, W.E. Lamb Jr., Quantum theory of an optical maser. I. General theory. Phys. Rev. 159, 208 (1967)

    Article  ADS  Google Scholar 

  33. J.P. Gordon, H.J. Zeiger, C.H. Townes, The maser - new type of microwave amplifier, frequency standard, and spectrometer. Phys. Rev. 99, 1264 (1955)

    Article  ADS  Google Scholar 

  34. P. Würfel, Physics of Solar Cells (Wiley, Weinheim, 2009)

    Google Scholar 

  35. C.H. Henry, Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. J. Appl. Phys. 51, 4494 (1980)

    Article  ADS  Google Scholar 

  36. A.A. Svidzinsky, M.O. Scully, Quantum dot and quantum well solar energy converters. Eur. Phys. J. Spec. Top. 230, 963 (2021)

    Article  Google Scholar 

Download references

Funding

This work was supported by the Air Force Office of Scientific Research (Grant No. FA9550-20-1-0366 DEF), the Office of Naval Research (Grants No. N00014-20-1-2184), the Robert A. Welch Foundation (Grant No. A-1261), the National Science Foundation (Grant No. PHY-2013771), the Natural Science Foundation of Fujian (Grant No. 2021I0025), the Natural Science Foundation of Shanghai (Grant No. 19ZR1475700), and the Fundamental Research Funds for the Central Universities. L.Y. acknowledges support from the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly A. Svidzinsky.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svidzinsky, A.A., Yuan, L. & Scully, M.O. New Kind of Condensation of Bose Particles Through Stimulated Processes. J Low Temp Phys 208, 184–195 (2022). https://doi.org/10.1007/s10909-021-02665-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02665-w

Keywords

Navigation