Skip to main content
Log in

Temperature and Frequency Dependence of Negative Capacitance, Dielectric and Electric Properties in La0.57Nd0.1Sr0.13Ag0.2MnO3 Ceramic

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A detailed study of electrical and dielectric properties of the La0.57Nd0.1Sr0.13Ag0.2MnO3 ceramic prepared by conventional solid-state reaction has been presented in this work. The frequency and temperature dependencies of capacitance (C–f–T) and conductance (G–f–T) of the sample were investigated in the frequency and temperature ranges of 40 Hz-110 MHz and 80 to 400 K, respectively. The C–f–T plot shows a phenomenon of negative capacitance (NC) which has been attributed to the blocking of charge carriers at the electrodes and the injection of minority carriers. Frequency and temperature dependencies of C and G show that these parameters are responsible for understanding conduction mechanism and charge transfer in materials. The frequency and temperature dependencies of dielectric properties such as the real and imaginary parts of permittivity (ε’, ε”), electrical modulus (M’, M”) and the real part of impedance (Z’) were obtained from the measurement of capacitance (C) and conductance (G) data. Negative dielectric constant is calculated from NC measurement, and it was attributed to the polarization effect. The ac conductivity versus frequency curve obeys to the Drude model. The ε’, ε”, tan δ and σac show a dispersion at lower frequencies. From the electrical and dielectric measurements, the metal–semiconductor behavior was observed for the sample at a transition temperature of the order of 280 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.H. Baek, H.W. Jang, C.M. Folkman, Y.L. Li, B. Winchester, J.X. Zhang, Q. He, Y.H. Chu, C.T. Nelson, M.S. Rzchowski, X.Q. Pan, R. Ramesh, L.Q. Chen, C.B. Eom, Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nat. Mater. 9, 309–314 (2010). https://doi.org/10.1038/nmat2703

    Article  ADS  Google Scholar 

  2. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009). https://doi.org/10.1002/adma.200802849

    Article  Google Scholar 

  3. A.Q. Jiang, C. Wang, K.J. Jin, X.B. Liu, J.F. Scott, C.S. Hwang, T.A. Tang, H.B. Lu, G.Z. Yang, A resistive memory in semiconducting BiFeO3 thin-film capacitors. Adv. Mater. 23, 1277–1281 (2011). https://doi.org/10.1002/adma.201004317

    Article  Google Scholar 

  4. N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.-W. Cheong, Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004). https://doi.org/10.1038/nature02572

    Article  ADS  Google Scholar 

  5. Y. Okamura, F. Kagawa, M. Mochizuki, M. Kubota, S. Seki, S. Ishiwata, M. Kawasaki, Y. Onose, Y. Tokura, Microwave magnetoelectric effect via skyrmion resonance modes in a helimagnetic multiferroic. Nat. Commun. 4, 2391–2397 (2013). https://doi.org/10.1038/ncomms3391

    Article  ADS  Google Scholar 

  6. P. Ben Ishai, E. Sader, Y.U. Feldman, I. Felner, M. Weger, Dielectric properties of Na0 7CoO2 and of the superconducting Na0 3CoO2·1. 3H2O. J. Supercond. 18, 455–459 (2005). https://doi.org/10.1007/s10948-005-0024-z

    Article  ADS  Google Scholar 

  7. Ş Çavdar, H. Koralay, N. Tuğluoğlu, A. Günen, Frequency-dependent dielectric characteristics of Tl-Ba-Ca-Cu-O bulk superconductor. Supercond. Sci. Technol. 18, 1204–1209 (2005). https://doi.org/10.1088/0953-2048/18/9/010

    Article  ADS  Google Scholar 

  8. L.L. Hench, J.L. West, ‹Principles of electronic ceramics› (Willey, New York, 1990)

    Google Scholar 

  9. I.G. Kaplan, J. Soullard, J. Hernandez-Cobos, Effect of Zn and Ni substitution on the local electronic structure of the YBa2Cu3O7 superconductor. Phys. Rev. B 65, 214509–214517 (2002). https://doi.org/10.1103/PhysRevB.65.214509

    Article  ADS  Google Scholar 

  10. Y. Fukuzumi, K. Mizuhashi, S. Ushida, Zn-doping effect on the c-axis charge dynamics of underdoped high-Tc cuprates. Phys. Rev. B 61, 627–633 (2000). https://doi.org/10.1103/PhysRevB.61.627

    Article  ADS  Google Scholar 

  11. A. Trukhanov, L. Panina, S. Trukhanov, V. Turchenko, M. Salem, Evolution of structure and physical properties in Al-substituted Ba-hexaferrites. Chin. Phys. B. 25, 016102 (2016). https://doi.org/10.1088/1674-1056/25/1/016102

    Article  Google Scholar 

  12. S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, V.G. Kos-tishyn, L.V. Panina, I.S. Kazakevich, A.M. Balagurov, Structure and magnetic properties of BaFe11.9In0.1O19 hexaferrite in a wide temperature range. J. Alloys Compd. 689, 383–393 (2019). https://doi.org/10.1016/j.jallcom.2016.07.309

    Article  Google Scholar 

  13. A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M.K. Nazeeruddin, M. Grätzel, impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. ACS Nano. 8(1), 362–373 (2014). https://doi.org/10.1021/nn404323g

    Article  Google Scholar 

  14. I. Mora-Sero, J. Bisquert, F. Fabregat-Santiago, G. Garcia- Belmonte, G. Zoppi, K. Durose, Y. Proskuryakov, I. Oja, A. Belaidi, T. Dittrich, Implications of the negative capacitance observed at forward bias in nanocomposite and polycrystalline solar cells. Nano. Lett. 6, 640–650 (2006). https://doi.org/10.1021/nl052295q

    Article  ADS  Google Scholar 

  15. J. Werner, A.F.J. Levi, R.T. Tung, M. Anzlowar, M. Pinto, Origin of the excess capacitance at intimate schottky contacts. Phys. Rev. Lett. 60, 53 (1988). https://doi.org/10.1103/PhysRevLett.60.53

    Article  ADS  Google Scholar 

  16. E. Arslan, Y. Şafak, Ş Altındal, Ö. Kelekçi, E. Özbay, Temperature dependent negative capacitance behavior in (Ni/Au)/AlGaN/AlN/GaN heterostructures. J. Non-Cryst. Solids. 356, 1006–1011 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.01.024

    Article  ADS  Google Scholar 

  17. C.C. Wang, G.Z. Liu, M. He, H.B. Lu, Low-frequency negative capacitance in La0 8Sr0 2MnO3∕Nb-doped SrTiO3 heterojunction. Appl. Phys. Lett. 92, 052905 (2008). https://doi.org/10.1063/1.2840195

    Article  ADS  Google Scholar 

  18. E.E. Tanrıkulu, S. Demirezen, Ş Altındal, İ Uslu, On the anomalous peak and negative capacitance in the capacitance–voltage (C-V) plots of Al/(%7 Zn-PVA)/p-Si (MPS) structure. J. Mater. Sci.: Mater. Electron. 29(4), 2890–2898 (2018). https://doi.org/10.1007/s10854-017-8219-1

    Article  Google Scholar 

  19. E.E. Tanrıkulu, S. Altındal Yerişkin, On the changes in the dielectric electric modulus and ac electrical-conductivity in the Al/(C29H32O17)/p-Si (MPS) structures in wide range of frequency and voltage. Physica B: Condens. Matter 623, 413345 (2021). https://doi.org/10.1016/j.physb.2021.413345

    Article  Google Scholar 

  20. S. Karadaş, S. Altındal Yerişkin, M. Balbaşı, Y. Azizian-Kalandaragh, Complex dielectric, complex electric modulus, and electrical conductivity in Al/(Graphene-PVA)/p-Si (metal-polymer-semiconductor) structures. J. Phys. Chem. Solids 148, 109740 (2021). https://doi.org/10.1016/j.jpcs.2020.109740

    Article  Google Scholar 

  21. S. Demirezen, E.E. Tanrıkulu, Ş Altındal, The study on negative dielectric properties of Al/PVA(Zn-doped)/p-Si (MPS) capacitors, Indian. J Phys. 93, 739–747 (2019). https://doi.org/10.1007/s12648-018-1355-5

    Article  Google Scholar 

  22. Ç.Ş Güçlü, A.F. Özdemir, A. Karabulut, A. Kökce, Ş Altındal, Investigation of temperature dependent negative capacitance in the forward bias C-V characteristics of (Au/Ti)/Al2O3/n-GaAs Schottky barrier diodes (SBDs). Mater. Sci. Semicond. Process. 89, 26–31 (2019). https://doi.org/10.1016/j.mssp.2018.08.019

    Article  Google Scholar 

  23. M. Hussein Al-Dharo, A. Kökce, D.A. Aldemir, A.F. Özdemir, Ş Altındal, The origin of anomalous peak and negative capacitance on dielectric behavior in the accumulation region in Au/(0 07Zn-doped polyvinyl alcohol)/n-4H–SiC metal-polymer-semiconductor structures/ diodes studied by temperature-dependent impedance measurements. J. Phys. Chem. Solids 144, 109523 (2020). https://doi.org/10.1016/j.jpcs.2020.109523

    Article  Google Scholar 

  24. M. Rahim, N.A. Khan, M. Mumtaz, Temperature and Frequency Dependent Dielectric Properties of Cu0.5Tl0.5Ba2Ca3(Cu4 – yCdy)O12 − δ Bulk Superconductor. J. Low Temp. Phys. 172, 47–58 (2013). https://doi.org/10.1007/s10909-012-0840-z

    Article  ADS  Google Scholar 

  25. P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972). https://doi.org/10.1103/PhysRevB.6.4370

    Article  ADS  Google Scholar 

  26. P. Tassin, T. Koschny, M. Kafesaki, C.M. Soukoulis, A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics. Nat. Photon. 6, 259–264 (2012). https://doi.org/10.1038/nphoton.2012.27

    Article  ADS  Google Scholar 

  27. J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996). https://doi.org/10.1103/PhysRevLett.76.4773

    Article  ADS  Google Scholar 

  28. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000). https://doi.org/10.1103/PhysRevLett.84.4184

    Article  ADS  Google Scholar 

  29. T. Tsutaoka, T. Kasagi, S. Yamamoto, K. Hatakeyama, Negative permittivity and permeability spectra of Cu/yttrium iron garnet hybrid granular composite materials in the microwave frequency range. Appl. Phys. Lett. 102, 181904–181914 (2013). https://doi.org/10.1063/1.4858976

    Article  ADS  Google Scholar 

  30. D. Esteveza, F. Qin, Y. Luo, L. Quan, Y.W. Mai, L. Panina, H.X. Peng, Tunable negative permittivity in nano-carbon coated magnetic microwire polymer metacomposites. Compos. Sci. Technol. 171, 206–217 (2019). https://doi.org/10.1016/j.compscitech.2018.12.016

    Article  Google Scholar 

  31. B. Zhao, C.B. Park, Tunable electromagnetic shielding properties of conductive poly(vinylidene fluoride)/Ni chain composite films with negative permittivity. J. Mater. Chem. C 5, 6954–6961 (2017). https://doi.org/10.1039/C7TC01865G

    Article  Google Scholar 

  32. Q. Liu, J. Tu, X. Wang, W. Yu, W. Zheng, Z. Zhao, Electrical conductivity of carbon nanotube/poly(vinylidene fluoride) composites prepared by high-speed mechanical mixing. Carbon 50, 339–341 (2012). https://doi.org/10.1016/j.carbon.2011.08.051

    Article  Google Scholar 

  33. C.H. Liu, N. Behdad, High-power microwave filters and frequency selective surfaces exploiting electromagnetic wave tunneling through ε-negative layers. J. Appl. Phys. 113, 064909–064919 (2013). https://doi.org/10.1063/1.4790584

    Article  ADS  Google Scholar 

  34. P. Wang, Z. Pan, M. Wang, S. Huang, J. Liu, J. Zhai, Polypyrrole random-coilinduced permittivity from negative to positive in all-organic composite films. J Materiomics 6, 348–354 (2020). https://doi.org/10.1016/j.jmat.2019.10.001

    Article  Google Scholar 

  35. S. Feng, K. Halterman, Coherent perfect absorption in epsilon-near-zero metamaterials. Phys Rev B 86, 165103 (2012). https://doi.org/10.1103/PhysRevB.86.165103

    Article  ADS  Google Scholar 

  36. Z. Wang, K. Sun, P. Xie, QGu. Yao Liu, R. Fan, J. Wang, Epsilon-negative BaTiO3/Cu composites with high thermal conductivity and yet low electrical conductivity. J. Materiomics 6, 145–151 (2020). https://doi.org/10.1016/j.jmat.2020.01.007

    Article  Google Scholar 

  37. R.K. Nkum, M.O. Gyekye, F. Boakye, Normal-state dielectric and transport properties of In-doped Bi–Pb–Sr–Ca–Cu–O. Solid State Commun. 122, 569–573 (2002). https://doi.org/10.1016/S0038-1098(02)00159-X

    Article  ADS  Google Scholar 

  38. X. Xu, Z. Jiao, M. Fu, L. Feng, K. Xu, R. Zuo, X. Chen, Dielectric studies in a layered Ba based Bi-2222 cuprate Bi2Ba2Nd1.6Ce0.4Cu2O10+δ. Physica C 417, 166–170 (2005). https://doi.org/10.1016/j.physc.2004.11.001

    Article  ADS  Google Scholar 

  39. P.T. Phong, N.V. Khien, N.V. Dang, D.H. Manh, L.V. Hong, I.-J. Lee, Effect of Pb substitution on structural and electrical transport of La 0.7 Ca0.3–x Pb x MnO3 (0 ≤ x ≤ 0.3) manganites. Phys B 466, 44 (2012). https://doi.org/10.1016/J.PHYSB.2015.03.022

    Article  ADS  Google Scholar 

  40. R. Hanen, A. Mleiki, H. Rahmouni, N. Guermazi, K. Khirouni, A. Cheikhrouhou, Study of electrical properties of (Pr/Ca/Pb)MnO3 ceramic. J. Mater. Sci.: Mater. Electron. 31, 16830–21683 (2020). https://doi.org/10.1007/s10854-020-04237-2

    Article  Google Scholar 

  41. M. Nasri, E. Dhahri, E.K. Hlil, Microstructural, magnetic, electrical transport and large magnetoresistance properties of La0.57Nd 0.1 Sr0.13 Ag0.2 MnO3. J. Electroceram. 43, 73–83 (2019). https://doi.org/10.1007/s10832-019-00185-4

    Article  Google Scholar 

  42. H. Rahmouni, M. Smari, B. Cherif, E. Dhahri, K. Khirouni, Conduction mechanism, impedance spectroscopic investigation and dielectric behavior of La0.5Ca0.5−xAgxMnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2). Dalton Trans. 44, 10457–10466 (2015). https://doi.org/10.1039/C5DT00444F

    Article  Google Scholar 

  43. M. Çağlar, F. Yakuphanoğlu, Fabrication and electrical characterization of flower-like CdO/p-Si heterojunction diode. J. Phys. D: Appl. Phys. 42, 045102–045105 (2009). https://doi.org/10.1088/0022-3727/42/4/045102

    Article  ADS  Google Scholar 

  44. A. Tataroğlu, Ş Altındal, The distribution of barrier heights in MIS type Schottky diodes from current–voltage–temperature (I–V–T) measurements. J. Alloys Compd. 479, 893–897 (2009). https://doi.org/10.1016/j.jallcom.2009.01.098

    Article  Google Scholar 

  45. A. Sertap Kavasoğlu, N. Kavasoğlu, A. Kodolbas, O. Birgi, O. Oktu, S. Oktik, Negative capacitance peculiarities in a-Si:H/c-Si rectifier structure. Microelectron. Eng. 87, 108–116 (2010). https://doi.org/10.1016/j.mee.2009.06.001

    Article  Google Scholar 

  46. X. Wu, H.L. Ebans, E.S. Yang, Negative capacitance at metal-semiconductor interfaces. J. Appl. Phys. 68, 2845–2848 (1990). https://doi.org/10.1063/1.346442

    Article  ADS  Google Scholar 

  47. C.Y. Zhu, L.F. Feng, C.D. Wang, H.X. Cong, G.Y. Zhang, Z.L. Yang, Z.Z. Chen, Negative capacitance in light-emitting devices. Solid State Electron. 53, 324–328 (2009). https://doi.org/10.1016/j.sse.2009.01.002

    Article  ADS  Google Scholar 

  48. M. Mumtaz, N.A. Khan, Dielectric properties of Cu0.5Tl0.5Ba2Ca3Cu4O12−δ bulk superconductor. Physica C 469, 728–731 (2009). https://doi.org/10.1016/j.physc.2009.03.055

    Article  ADS  Google Scholar 

  49. J. Werner, A.F.J. Levi, R.T. Tung, M. Anzlowar, M. Pinto, Origin of the excess capacitance at intimate Schottky contacts. Phys. Rev. Lett. 60, 53–56 (1988). https://doi.org/10.1103/PhysRevLett.60.53

    Article  ADS  Google Scholar 

  50. B.K. Jones, J. Santana, M. McPherson, Negative capacitance effects in semiconductor diodes. Solid State Commun. 107, 47–50 (1988). https://doi.org/10.1016/S0038-1098(98)00162-8

    Article  ADS  Google Scholar 

  51. G.B. Parravicini, A. Stella, M.C. Ungureanu, R. Kofman, Low-frequency negative capacitance effect in systems of metallic nanoparticles embedded in dielectric matrix. Appl. Phys. Lett. 85, 302–304 (2004). https://doi.org/10.1063/1.1772872

    Article  ADS  Google Scholar 

  52. M. Ershov, H.C. Liu, L. Li, M. Buchanan, Z.R. Wasileweki, A.K. Jonscjer, Negative capacitance effect in semiconductor devices. IEEE Trans. Electron Devices 45, 2196–2206 (1998). https://doi.org/10.1109/16.725254

    Article  ADS  Google Scholar 

  53. A.K. Jonscher, The physical origin of negative capacitance. J. Chem. Soc. 82, 75–81 (1986). https://doi.org/10.1039/F29868200075

    Article  Google Scholar 

  54. M. Beale, P. Mackay, The origins and characteristics of negative capacitance in metal–insulator–metal devices. Philos. Mag. B 65, 47–64 (1992). https://doi.org/10.1080/13642819208223046

    Article  ADS  Google Scholar 

  55. Ş Çavdar, H. Koralay, Ş Altındal, Effect of vanadium substitution on the dielectric properties of glass ceramic Bi-2212 superconductor. J. Low Temp Phys 164, 102–114 (2011). https://doi.org/10.1007/s10909-011-0361-1

    Article  ADS  Google Scholar 

  56. G. Staikova, M. Nold, W.J. Lorenza, A. Froese, R. Speck, W. Wiesbeck, M.W. Breiter, Effect of grain boundaries on the low-temperature ionic conductivity of polycrystalline RbAgJ, and Ag SBr. Solid State Ionics 93, 85–93 (1997). https://doi.org/10.1016/S0167-2738(96)00496-1

    Article  Google Scholar 

  57. Z. Wang, P. Xie, C. Cheng, G. Fan, Z. Zhang, R. Fan et al., Regulation mechanism of negative permittivity in poly (p-phenylene sulfide)/multiwall carbon nanotubes composites. Synth Met. 244, 15–19 (2018). https://doi.org/10.1016/j.synthmet.2018.06.013

    Article  Google Scholar 

  58. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 6, 121–124 (1951). https://doi.org/10.1103/PhysRev.83.121

    Article  ADS  Google Scholar 

  59. K.W. Wagner, Zur Theorie der unvollkommenen Dielektrika. Ann. Phys. 345, 817–819 (1913). https://doi.org/10.1002/andp.19133450502

    Article  MATH  Google Scholar 

  60. A. William, The distribution of relaxation times in typical dielectrics. Physics 7, 434–450 (1936). https://doi.org/10.1063/1.1745355

    Article  Google Scholar 

  61. S. Ramesh, A.H. Yahana, A.K. Arof, Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ionics 152–153, 291–294 (2002). https://doi.org/10.1016/S0167-2738(02)00311-9

    Article  Google Scholar 

  62. J. Nowotny, M. Sloma, Surface electrical properties of BaTiO3 at elevated temperatures. Solid State Ionics 49, 129–133 (1991). https://doi.org/10.1016/0167-2738(91)90078-P

    Article  Google Scholar 

  63. L. Zhang, H. Hao, S.J. Zhang, M.T. Lanagan, Z.H. Yao, Q. Xu, J. Xie, J. Zhou, M.H. Cao, H.X. Liu, Defect structure-electrical property relationship in Mn-doped calcium strontium titanate dielectric ceramics. J. Am. Ceram. Soc. 100, 4638–4648 (2017). https://doi.org/10.1111/jace.14994

    Article  Google Scholar 

  64. A.A. Khan, M.U. Fayaz, M.N. Khan, M. Iqbal, A. Majeed, R. Bilkees, S. Mukhtar, M. Javed, Investigation of charge transport mechanism in semiconducting La0.5 Ca0.5 Mn 0.5 Fe0.5O3 manganite prepared by sol-gel method. J. Mater. Sci.: Mater. Electron. 29, 13577–13587 (2018). https://doi.org/10.1007/s10854-018-9485-2

    Article  Google Scholar 

  65. N.K. Singh, P. Kumar, C. Prakash, Microstructure and dielectric relaxation of BT and ST doped Ba(Fe0.5Nb0.5)O3ceramics for sensor applications. Adv. Mat. Lett. 3, 181–187 (2012). https://doi.org/10.5185/amlett.2012.3325

    Article  Google Scholar 

  66. O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Maglione, Space charge relaxation in perovskites. Phys. Rev. B. 49(1994), 7868–7873 (1994). https://doi.org/10.1103/PhysRevB.49.7868

    Article  ADS  Google Scholar 

  67. S. Sahoo, U. Dash, S. Parashar, S.M. Ali, Frequency and temperature dependent electrical characteristics of CaTiO3nano-ceramic prepared by high-energy ball milling. J Adv Ceram. 3, 291–300 (2013). https://doi.org/10.1007/s40145-013-0075-8

    Article  Google Scholar 

  68. A.A. Kadam, S.S. Shinde, S.P. Yadav, P.S. Patil, K.Y. Rajpure, Structural, morphological, electrical and magnetic properties of Dydoped Ni–Co substitutional spinel ferrite. J. Magn. Magn. Mater. 329, 59–64 (2013). https://doi.org/10.1016/j.jmmm.2012.10.008

    Article  ADS  Google Scholar 

  69. M. Ishaque, M.U. Islam, M.A. Khan, I.Z. Rahman, A. Genson, S. Hampshire, Structural, electrical and dielectric properties of yttrium substituted nickel ferrites. Phys B. 405, 1532–1540 (2010). https://doi.org/10.1016/j.physb.2009.12.035

    Article  ADS  Google Scholar 

  70. M. Hsini, N. Hamdaoui, S. Hcini, M.L. Bouazizi, S. Zemni, L. Beji, Effect of iron doping at Mn-site on complex impedance spectroscopy properties ofNd 0.67 Ba0.33 MnO3 perovskite. Phase Transitions 91, 316–331 (2017). https://doi.org/10.1080/01411594.2017.1382701

    Article  Google Scholar 

  71. O. Rejaiba, A.F. Braña de Cal, A. Matoussi, A comprehensive study on the interface states in the ECR-PECVD SiO2/p-Si MOS structures analyzed by different method. Physica E 109, 84–92 (2019). https://doi.org/10.1016/j.physe.2019.01.008

    Article  ADS  Google Scholar 

  72. N. Kharrat, R. Lahouli, W. Cheikhrouhou-Koubaa, L. Sicard, K. Khirouni, M. Koubaa, A. Cheikhrouhou, Effect of nickel doping on the electrical conductance properties of La0.67Ba0.33Mn1-xNixO3 (x=0 and 0.075) manganite. Solid State Commun. 297, 21–26 (2019). https://doi.org/10.1016/j.ssc.2019.05.007

    Article  ADS  Google Scholar 

  73. C. Jiwen Feng, Y. Lian-Pin Hwang, Magnetic and magneto-transport properties in the Ni-doped La0.7 Sr0.3 MnO3 system. Phys. Rev. B 61, 12271 (2000). https://doi.org/10.1063/1.4894713

    Article  ADS  Google Scholar 

  74. A. Coşkun, E. Taşarkuyu, A.E. Irmak, M. Acet, Y. Samancıoğlu, S. Aktürk, Magnetic properties of La0.65 Ca0.30 Pb0.05 Mn0.9 B 0.1 O3 (B = Co, Ni, Cu and Zn). J. Alloy. Comp. 622, 796–804 (2015). https://doi.org/10.1016/j.jallcom.2014.10.182

    Article  Google Scholar 

  75. R.N. Bhowmik, A.G. Lone, Dielectric properties of α-Fe1.6Ga0.4O3 oxide: a promising magneto-electric material. J. Alloy. Comp. 680, 31–42 (2016). https://doi.org/10.1016/j.jallcom.2016.04.058

    Article  Google Scholar 

  76. A. Ben Jazia Kharrat, S. Moussa, N. Moutiaa, K. Khirouni, W. Boujelben, Structural, electrical and dielectric properties of Bi-doped Pr 0.8-x Bi x Sr0.2 MnO3 manganite oxides prepared by sol-gel process. J. Alloys Compd. 724, 389–399 (2017). https://doi.org/10.1016/j.jallcom.2017.07.046

    Article  Google Scholar 

  77. I.M. Hodge, M.D. Ingram, A.R. West, A new method for analysing the A.C behaviour of polycrystalline solid electrolytes. J. Electroanal. Chem. 58, 429–432 (1975). https://doi.org/10.1016/S0022-0728(75)80102-1

    Article  Google Scholar 

  78. B. Behera, P. Nayak, R.N.P. Choudhary, Impedance spectroscopy study of NaBa2V5O15 ceramic. J. Alloys Compd. 436, 226–232 (2007). https://doi.org/10.1016/j.jallcom.2006.07.028

    Article  Google Scholar 

  79. K.P. Padmasree, D.D. Kanchan, A.R. Kulkami, Impedance and Modulus studies of the solid electrolyte system 20CdI2–80 [xAg2O–y (0.7 V2O5–0.3 B2O3)], where 1≤ x/y≤ 3. Solid State Ionics 177, 475–482 (2006). https://doi.org/10.1016/j.ssi.2005.12.019

    Article  Google Scholar 

  80. Okutan M, Yalçın Z, İçelli O, Ay F, Boncukçuoğlu R, Artun O, Delipınar D (2014) Electrical Behavior of Probertite by Dielectric Spectroscopy, High Temp Mater Proc, 33(6): 545 – 552 :DOI https://doi.org/10.1515/htmp-2013-0121

  81. T. Rhimi, M. Toumi, K. Khirouni, S. Guermazi, AC conductivity, electric modulus analysis of KLi(H2PO4) 2 compound. J. Alloys Compd. 714, 546–552 (2017). https://doi.org/10.1016/j.jallcom.2017.04.282

    Article  Google Scholar 

  82. J. Suchanicz, The low-frequency dielectric relaxation Na 0.5 Bi 0.5 TiO 3 ceramics. Mater. Sci. Eng. B. 55, 114–118 (1998). https://doi.org/10.1016/S0921-5107(98)00188-3

    Article  Google Scholar 

Download references

Funding

This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University,Project No. 2020/01/16565,Mohamed Lamjed Bouazizi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Rejaiba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasri, M., Rejaiba, O., Charguia, R. et al. Temperature and Frequency Dependence of Negative Capacitance, Dielectric and Electric Properties in La0.57Nd0.1Sr0.13Ag0.2MnO3 Ceramic. J Low Temp Phys 206, 250–268 (2022). https://doi.org/10.1007/s10909-021-02656-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02656-x

Keywords

Navigation