Skip to main content
Log in

Superexchange Ferromagnetic Coupling and Thermodynamic Features of the La2FeCoO6 Semiconductor

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

A Correction to this article was published on 14 July 2022

This article has been updated

Abstract

Ab initio calculations of the electronic and thermodynamic properties for the oxide ferrocobaltite of the perovskite-type La2FeCoO6 are reported. The calculations of the band structure and density of states were carried out by means of first-principles calculations, using the formalism of the Functional Density Theory and the Plane Wave and Pseudopotential method through the VASP code. Exchange and correlation energy were described using the Generalized Gradient Approximation, including spin polarization and Hubbard potential correction due to the presence of Fe-3d and Co-3d orbitals. The semiconductor behavior of the material was established by obtaining a band gap of 2.35 eV. Strong hybridizations between the 2p oxygen orbitals in the valence band with Fe2+-3d and Co4+-3d states allow us to explain the ferromagnetic nature through the superexchange mechanism between high-spin states of Fe2+ with low-spin states of Co4+ mediated by O2− orbitals. The dependence of specific heat with respect to temperature and pressure, as well as the coefficient of thermal expansion, the Debye temperature, and the Grüneisen parameter, were calculated from the equation of state, using the quasi-harmonic Debye model. The theoretical results obtained are comparable with the experimental values obtained in the literature for this material reported as a ferromagnetic semiconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

The data considered in this manuscript will be made available upon request sent directly to the authors.

Change history

References

  1. A. Hirohata, K Yamada, Y. Nakatani, I.-L. Prejbeanu, B. Diény, P. Pirro, B. Hillebrands, J. Magn. Magn. Mater. 509, 166711 (2020).

  2. V.K. Joshi, Spintronics: A contemporary review of emerging electronics devices. Eng. Sci. Technol. an Int. J. 19, 1503 (2016)

    Article  Google Scholar 

  3. M. Bichurin, V. Petrov, S. Priya, A. Bhalla, Adv. Condens. Matter. Phys., 129794 (2012).

  4. D.K. Pradhan, S. Kumari, P.D. Rack, Nanomaterials 10, 2072 (2020)

    Article  Google Scholar 

  5. C.M. Bonilla, D.A. Landínez Téllez, J. Arbey Rodríguez, E. Vera López, J. Roa-Rojas, Half-metallic behavior and electronic structure of Sr2CrMoO6 magnetic system, Phys. B: Condens. Matter. 398, 208 (2007).

  6. S.-Q. Shen, AAPPS Bull. 18, 29 (2008)

    Google Scholar 

  7. M. Tanaka, Jpn. J. Appl. Phys. 60, 010101 (2021)

  8. J.K. Furdyna, N. Samarth, J. Appl. Phys. 61, 3526 (1987)

    Article  ADS  Google Scholar 

  9. G. Zhao, Z. Deng, C. Jin, J. Semicond. 40, 081505 (2019)

  10. J.R. Mawdsley, T.R. Krause, Appl. Catal. A-Gen. 334, 311 (2008)

    Article  Google Scholar 

  11. C.E. Alarcón-Suesca, C.E. Deluque Toro, A.V. Gil Rebaza, D.A. Landínez Téllez, J Roa-Rojas, J. Alloys Compd. 771, 1080 (2019)

  12. W.C. Koehler, E.O. Wollan, J. Phys. Chem. Solids. 2, 100 (1957)

    Article  ADS  Google Scholar 

  13. G.H. Jonker, J.H. van Santen, Physica 19, 120 (1953)

    Article  ADS  Google Scholar 

  14. R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer, Phys. Rev. Lett. 71, 2331 (1993)

    Article  ADS  Google Scholar 

  15. A. Mitra, A.S. Mahapatra, A. Mallick, A. Shaw, M. Ghosh, P.K. Chakrabarti, J. All. Compd. 726, 1195 (2017)

    Article  Google Scholar 

  16. A.M. Durand, D.P. Belanger, C.H. Booth, F. Ye, S. Chi, J.A. Fernandez-Baca, M. Bhat, J. Phys.: Condens. Matter 25, 382203 (2013)

  17. L. Sudheendra, MD. M. Seikh, A.R. Raju, C. Narayana, C.N.R. Rao, Ferroelectrics, 306, 227 (2004)

  18. H.-R. Fuh, K.-C. Weng, Y.-P. Liu, Y.-K. Wang, J. All. Compd. 622, 657 (2015)

    Article  Google Scholar 

  19. G.R. Haripriya, C.M.N. Kumar, R. Pradheesh, L. M. Martinez, C. L. Saiz, S. R. Singamaneni, T. Chatterji, V. Sankaranarayanan, K. Sethupathi, B. Kiefer, H.S. Nair, Phys. Rev. B 99, 184411 (2019)

  20. J.A. Jaramillo Palacio, K.A. Muñoz Pulido, J. Arbey Rodríguez, D.A. Landínez Téllez, J. Roa-Rojas, J. Adv. Dielectrics 11, 2140003 (2021)

  21. H. Weihe, H.U. Güdel, Inorg. Chem. 36, 3632 (1997)

    Article  Google Scholar 

  22. V.R. Estrada Contreras, C.E. Alarcón Suesca, C.E. Deluque Toro, D.A. Landínez Téllez, J. Roa-Rojas, Crystalline, ferromagnetic-semiconductor and electronic features of the terbium-based cobalt-ferrite Tb2FeCoO6, Ceram. Int. 47, 14408 (2021)

  23. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  24. I. Vladimir, Strong Coulomb Correlations in Electronic Structure Calculations: beyond the Local Density Approximation (Gordon and Breach, Amsterdam, The Netherlands, 2000)

    Google Scholar 

  25. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  26. G. Kresse, J. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  27. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003)

    Article  ADS  Google Scholar 

  28. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  29. P. Guss, M.E. Foster, B.M. Wong, F.P. Doty, K. Shah, M.R. Squillante, U. Shirwadkar, R. Hawrami, J. Tower, D. Yuan, J. Appl. Phys. 115, 034908 (2014)

  30. A.I. Liechtenstein, V.I. Anisimov, J. Zaanen, Phys. Rev. B 52, R5467 (1995)

    Article  ADS  Google Scholar 

  31. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  32. M. Methfessel, A.T. Paxton, Phys. Rev. B 40, 3616 (1986)

    Article  ADS  Google Scholar 

  33. F.D. Murnaghan, Proc. Natl. Acad. Sci. U. S. A. 30, 244 (1944)

    Article  ADS  Google Scholar 

  34. C. E. Deluque Toro, D. A. Landínez Téllez, J. Roa-Rojas, DYNA, 85, 27 (2018)

  35. M.W. Lufaso, P.M. Woodward, Using Bond Valences to Model the Structures of Ternary and Quaternary Oxides. In: Structure and Bonding, Eds. I.D. Brown, K.R. Poeppelmeier, pp. 59–90 (2014)

  36. I.D. Brown, Bond Valence Theory. In: Structure and Bonding, Eds. I.D. Brown, K.R. Poeppelmeier, pp. 11–58 (2014)

  37. V.M. Goldschmidt, Naturwissenschaften 14, 477 (1926)

    Article  ADS  Google Scholar 

  38. Y. Naruse, A. Takamori, Orbital Phase Perspective of Goodenough-Kanamori-Anderson Rules (GKA Rules) in Superexchange Interaction. ChemRxiv. Cambridge: Cambridge Open Engage (2020)

  39. C.E. Deluque Toro, A.S. Mosquera Polo, J.I. Villa Hernández, D.A. Landínez Téllez, J. Roa-Rojas, Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 42, 180 (2018)

  40. C.E. Deluque Toro, A.S. Mosquera Polo, A.V. Gil Rebaza, D.A. Landínez Téllez, J. Roa-Rojas, J. Low Temp. Phys. 192, 265 (2018)

  41. J.A. Cuervo Farfán, C.E. Deluque Toro, C.A. Parra Vargas, D.A. Landínez Téllez, J. Roa-Rojas, J. Mater. Chem. C 8, 14925 (2020)

  42. E.I. Andritsos, E. Zarkadoula, A.E. Phillips, M.T. Dove, C.J. Walker, V.V. Brazhkin. K. Trachenko, J. Phys.: Condens. Matter 25, 235401 (2013)

  43. M.S. Bryan, J.W.L. Pang, B.C. Larson, A. Chernatynskiy, D.L. Abernathy, K. Gofryk, M.E. Manley, Phys. Rev. Mater. 3, 065405 (2019)

  44. O. Sahnoun, H. Bouhani-Benziane, M. Sahnoun, M. Driz, C. Daul, Comput. Mater. Sci. 77, 316 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Division of Investigation and Extension (DIEB) of the National University of Colombia, FONCIENCIAS of the Universidad del Magdalena and MINCIENCIAS, on the project FP80740-243-2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Roa-Rojas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The corresponding author “J. Roa-Rojas” affiliation has been corrected to read as “Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, 111321 Bogotá D.C., Colombia”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toro, C.E.D., Pulido, K.A.M., Rodríguez, J.A. et al. Superexchange Ferromagnetic Coupling and Thermodynamic Features of the La2FeCoO6 Semiconductor. J Low Temp Phys 206, 269–280 (2022). https://doi.org/10.1007/s10909-021-02649-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02649-w

Keywords

Navigation