Skip to main content
Log in

Plasmonic Excitations in 4-MLG Structures: Background Dielectric Inhomogeneity Effects

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We investigate the plasmonic excitations and the broadening functions of the plasmon dispersions in multilayer structures consisting of four parallel monolayer graphene (4-MLG) sheets on an inhomogeneous background dielectric within the random-phase approximation. By finding the zeroes of the frequency-dependent dielectric function, we determine one optical and three acoustic plasmon modes in the system. We observed that the dependence of plasmon properties in the inhomogeneous 4-MLG system on the parameters differs significantly from that in the homogeneous one. Once the inhomogeneity of the background dielectric is taken into account, the plasmon frequencies get smaller values, compared to those in the homogeneous situation as well as in the MLG at the same parameters. As the interlayer separation increases, the plasmon branches in the inhomogeneous system move downward while only the optical branch in the homogeneous one does this, the acoustic plasmon branches shift to the opposite direction. With the efficiently large separations, plasmon lines in the homogeneous case become identical while those in the inhomogeneous case separate from each other in the large momentum region. For homogeneous 4-MLG systems, the decrease in carrier density leads to the decrease in plasmon frequency, but for inhomogeneous 4-MLG structures, the decrease in the doping density of the first graphene layer increases remarkably the frequencies of all plasmon branches. Finally, the broadening function of the plasmon dispersions gets the larger values as plasmon lines go far away from the inter single-particle excitation boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G.X. Ni et al., Fundamental limits to graphene plasmonics. Nature 557, 530 (2018)

    ADS  Google Scholar 

  2. A.H. CastroNeto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)

    ADS  Google Scholar 

  3. F.J. Garcia-de-Abajo, Graphene plasmonics: challenges and opportunities. ACS Photonics 1, 135 (2014)

    Google Scholar 

  4. A.K. Geim, K.S. Novoselov, The rise of graphene. Nature Mater 6, 183 (2007)

    ADS  Google Scholar 

  5. A.N. Grigorenko, M. Polini, K.S. Novoselov, Graphene plasmonics. Nat. Photonics 6, 749 (2012)

    ADS  Google Scholar 

  6. C. Liu, Y. Bai, J. Zhou, Q. Zhao, L. Qiao, A review of graphene plasmons and its combination with metasurface. J. Korean Ceram. Soc. 54(5), 349 (2017)

    Google Scholar 

  7. X. Luo, T. Qiu, W. Lu, Z. Ni, Plasmons in graphene: recent progress and applications. Mater. Sci. Eng. R. Rep. 74, 351 (2013)

    Google Scholar 

  8. S.A. Maier, Plasmonics – Fundamentals and Applications (Springer, New York, 2007)

    Google Scholar 

  9. E. McCann, Electronic properties of monolayer and bilayer graphene, in Graphene Nanoelectronics. ed. by H. Raza (NanoScience and Technology Springer, Berlin, 2011)

    Google Scholar 

  10. M. Polini, R. Asgari, G. Borghi, Y. Barlas, T. Pereg-Barnea, A.H. MacDonald, Plasmons and the spectral function of graphene. Phys. Rev. B 77, 081411(R) (2008)

    ADS  Google Scholar 

  11. A. Politano, H.K. Yu, D. Farías, G. Chiarello, Multiple acoustic surface plasmons in graphene/Cu(111) contacts. Phys. Rev. B 97, 035414 (2018)

    ADS  Google Scholar 

  12. A. Politano, A.R. Marino, V. Formoso, D. Farías, R. Miranda, G. Chiarello, Evidence for acoustic-like plasmons on epitaxial graphene on Pt(111). Phys. Rev. B 84, 033401 (2011)

    ADS  Google Scholar 

  13. S. DasSarma, S. Adam, E.H. Hwang, E. Rossi, Electronic transport in two dimensional graphene. Rev. Mod. Phys. 83, 407 (2011)

    ADS  Google Scholar 

  14. S. DasSarma, E.H. Hwang, E. Rossi, Theory of carrier transport in bilayer graphene. Phys. Rev. B 81, 161407 (2010)

    ADS  Google Scholar 

  15. A. Politano et al., Photothermal membrane distillation for seawater desalination. Adv. Mater. 29(2), 201603504 (2017)

    MathSciNet  Google Scholar 

  16. A. Politano, G. Chiarello, Plasmon modes in graphene: status and prospect. Nanoscale 6, 10927 (2014)

    ADS  Google Scholar 

  17. A. Politano, G. Chiarello, C. Spinella, Plasmon spectroscopy of graphene and other two-dimensional materials with transmission electron microscopy. Mater. Sci. Semicond. Process. 65, 88 (2017)

    Google Scholar 

  18. A. Politano, A.R. Marino, G. Chiarello, Effects of a humid environment on the sheet plasmon resonance in epitaxial graphene. Phys. Rev. B 86, 085420 (2012)

    ADS  Google Scholar 

  19. A. Politano et al., Photothermal membrane distillation for seawater desalination. Adv. Mater. (2017). https://doi.org/10.1002/adma.201603504

    Article  Google Scholar 

  20. M. Jablan, H. Buljan, M. Soljačić, Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009)

    ADS  Google Scholar 

  21. M. Jablan, M. Soljačić, H. Buljan, Plasmons in graphene: fundamental properties and potential applications. Proc. IEEE 11(7), 1689 (2013)

    Google Scholar 

  22. G.X. Ni et al., Fundamental limits of graphene plasmonics. Nature 557, 530 (2018)

    ADS  Google Scholar 

  23. J. Wei, Z. Zang, Y. Zhang, M. Wang, J. Du, X. Tang, Enhanced performance of light-controlled conductive switching in hybrid cuprous oxide/reduced graphene oxide (Cu2O/rGO) nanocomposites. Opt. Lett. 42, 911 (2017)

    ADS  Google Scholar 

  24. A. Politano, D. Campi, V. Formoso, G. Chiarello, Evidence of confinement of the pi-plasmon in periodically rippled graphene on Ru(0001). Phys. Chem. Chem. Phys. 15, 11356 (2013)

    Google Scholar 

  25. A. Politano, Probing growth dynamics of graphene/Ru(0001) and the effects of air exposure by means of helium atom scattering. Surf. Sci. 634, 44 (2015)

    ADS  Google Scholar 

  26. E.H. Hwang, S. DasSarma, Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B 75, 205418 (2007)

    ADS  Google Scholar 

  27. G. Gonzalez-de-la-Cruz, Coupling between graphene and intersubband collective excitations in quantum wells. Solid State Commun. 262, 11 (2017)

    ADS  Google Scholar 

  28. E.H. Hwang, S. DasSarma, Exotic plasmon modes of double layer graphene. Phys. Rev. B 80, 205405 (2009)

    ADS  Google Scholar 

  29. N.V. Men, N.Q. Khanh, Plasmon modes in graphene–GaAs heterostructures. Phys. Lett. A 381(44), 3779 (2017)

    ADS  Google Scholar 

  30. D.V. Tuan, N.Q. Khanh, Plasmon modes of double-layer graphene at finite temperature. Physica E 54, 267 (2013)

    ADS  Google Scholar 

  31. T. Vazifehshenas, T. Amlaki, M. Farmanbar, F. Parhizgar, Temperature effect on plasmon dispersions in double-layer graphene systems. Phys. Lett. A 374(48), 4899 (2010)

    ADS  Google Scholar 

  32. N.V. Men, N.Q. Khanh, D.T.K. Phuong, Plasmon modes in N-layer bilayer graphene structures. Solid State Commun. 298, 113647 (2019)

    Google Scholar 

  33. D.T.K. Phuong, N.V. Men, Plasmon modes in N-layer graphene structures at zero temperature. J. Low Temp. Phys. 201, 311 (2020)

    ADS  Google Scholar 

  34. J.-J. Zhu, S.M. Badalyan, F.M. Peeters, Plasmonic excitations in Coulomb-coupled N-layer graphene structures. Phys. Rev. B 87, 085401 (2013)

    ADS  Google Scholar 

  35. P. Wachsmuth, R. Hambach, G. Benner, U. Kaiser, Plasmon bands in multilayer graphene. Phys. Rev. B 90, 235434 (2014)

    ADS  Google Scholar 

  36. H. Yan et al., Tunable infrared plasmonic devices using graphene/insulator stacks. Nat. Nanotech. 7, 330 (2012)

    ADS  Google Scholar 

  37. N.V. Men, Plasmon modes in N-layer gapped graphene. Physica B 578, 411876 (2020)

    Google Scholar 

  38. S.M. Badalyan, F.M. Peeters, Effect of nonhomogenous dielectric background on the plasmon modes in graphene double-layer structures at finite temperatures. Phys. Rev. B 85(19), 195444 (2012)

    ADS  Google Scholar 

  39. N.V. Men, N.Q. Khanh, D.T.K. Phuong, Plasmon modes in double bilayer graphene heterostructures. Solid State Commun. 294, 43 (2019)

    ADS  Google Scholar 

  40. N.V. Men, N.Q. Khanh, D.T.K. Phuong, Plasmon modes in double-layer gapped graphene. Physica E 118, 113859 (2020)

    Google Scholar 

  41. D.T.K. Phuong, N.V. Men, Plasmon modes in 3-layer graphene structures: Inhomogeneity effects. Phys. Lett. A 383, 125971 (2019)

    MATH  Google Scholar 

  42. N.Q. Khanh, N.V. Men, Plasmon modes in bilayer-monolayer graphene heterostructures. Phys. Status Solidi B 255(7), 1700656 (2018)

    Google Scholar 

  43. N.V. Men, N.Q. Khanh, Plasmon modes in Dirac/Schrӧdinger hybrid electron systems including layer-thickness and exchange-correlation effects. Can. J. Phys. 96(6), 615 (2018)

    ADS  Google Scholar 

  44. N.V. Men, N.Q. Khanh, D.T.K. Phuong, Plasmon modes in MLG-2DEG heterostructures: temperature effects. Phys. Lett. A 183, 1364 (2019)

    ADS  Google Scholar 

  45. N.V. Men, Coulomb bare interactions in inhomogeneous 4-layer graphene structures. Phys. Lett. A 384, 126777 (2020)

    MathSciNet  Google Scholar 

  46. N.V. Men, D.T.K. Phuong, Plasmon modes in double-layer gapped graphene at zero temperature. Phys. Lett. A 384, 126221 (2020)

    Google Scholar 

  47. D. Svintsov, V. Vyurkov, V. Ryzhii, T. Otsuji, Voltage-controlled surfaceplasmon-polaritons in double graphene layer structures. J. Appl. Phys. 113, 053701 (2013)

    ADS  Google Scholar 

  48. A. Principi, M. Carrega, R. Asgari, V. Pellegrini, M. Polini, Plasmons and Coulomb drag in Dirac/Schroedinger hybrid electron systems. Phys. Rev. B 86, 085421 (2012)

    ADS  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National University Ho Chi Minh City (VNU-HCM) under grant number “C2021-16-06”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van-Men Nguyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong-Thi, KP., Nguyen, VM. Plasmonic Excitations in 4-MLG Structures: Background Dielectric Inhomogeneity Effects. J Low Temp Phys 206, 51–62 (2022). https://doi.org/10.1007/s10909-021-02642-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02642-3

Keywords

PACS

Navigation