Skip to main content
Log in

Confined 4He Near Tλ: Scaling and Giant Proximity Effects

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

This is a brief review of the experimental results for the critical behavior near \({T}_{\lambda }\) of 4He confined in a well-defined geometry. This is realized using cells formed with patterned Si wafers which are directly bonded. The thrust of these experiments is to verify finite-size scaling near \({T}_{\lambda }\) for different dimensionality crossover and to explore the coupling and proximity effects between two adjoining regions of confined 4He. Predictions of finite-size scaling are verified for film confinement in the case of the specific heat. However, there are issues in the temperature region where the film becomes superfluid. In the case of coupling and proximity effects, one finds that remarkably and unexpectedly these extend orders of magnitude beyond the range of the correlation length \(\xi .\) A more complete discussion of these results and techniques, as well as other relevant experiments in helium, and the connection to observations with superconductors can be found in (FM. Gasparini et al. Rev. Mod. Phys.80:1009–1059, 2008: JK Perron et al. Rep. Prog. Phys.82: 1–29, 2019).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D.J. Bishop, J.D. Reppy, Phys. Rev. Lett. 40, 1727–1730 (1978)

    Article  ADS  Google Scholar 

  2. I. Rudnick, Phys. Rev. Lett. 40, 1454 (1978)

    Article  ADS  Google Scholar 

  3. D.J. Nelson, J. M. Kosterlitz Phys. Rev. Lett. 39, 1201–1205 (1977)

    Article  ADS  Google Scholar 

  4. J.M. Kosterlitz, D.J. Thouless, J. Phys. C: Solid State Phys. 6, 1181–1203 (1973)

    Article  ADS  Google Scholar 

  5. M. E. Fisher (1978), in Critical Phenomena, Proceedings of the 51st “Enrico Fermi” Summer School, Varenna, Italy, edited by M. Green (Academic, New York), 1–97

  6. D. Finotello, Y.Y. Yu, F. M. Gasparini. Phys. Rev. B 41, 10994–11010 (1990)

    Article  ADS  Google Scholar 

  7. L.P. Kadanoff, Statistical Physics, Statics, Dynamics and Renormalization (World Scientific, Singapore, 2000)

    Book  Google Scholar 

  8. R. J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press), (1991)

  9. M.P. Kawathra, R.K. Pathria, Phys. Rev. 151, 132–137 (1966)

    Article  ADS  Google Scholar 

  10. V. L. Ginzburg, Ed. Superconductivity, Superdiamagnetism, Superfluidity (Mir Publishers), (1991). See also references within to earlier Journal Articles.

  11. V.L. Ginzburg, A.A. Sobyanin, J. Low Temp. Phys. 49, 507–503 (1982)

    Article  ADS  Google Scholar 

  12. L.S. Goldner, G. Ahlers, Phys. Rev. B 45, 13129–13132 (1993)

    Article  ADS  Google Scholar 

  13. J.K. Perron, M.O. Kimball, F.M. Gasparini, Rep. Prog. Phys. 82, 1–29 (2019). https://doi.org/10.1088/1361-6633/ab3df5

    Article  Google Scholar 

  14. J.K. Perron, M.O. Kimball, K.P. Mooney, F.M. Gasparini, Phys. Rev. B 87, 094507 (2013)

    Article  ADS  Google Scholar 

  15. F.M. Gasparini, M.O. Kimball, K.P. Mooney, M. Diaz-Avila, Rev. Mod. Phys. 80(3), 1009–1059 (2008)

    Article  ADS  Google Scholar 

  16. S. Mehta, M.O. Kimball, F.M. Gasparini, J. Low Temp. Phys. 114, 467–521 (1999)

    Article  ADS  Google Scholar 

  17. V. Ambegaokar, B.I. Halperin, D.R. Nelson, E.D. Siggia, Phys. Rev. B 21, 1806–1826 (1980)

    Article  ADS  Google Scholar 

  18. M.O. Kimball, K.P. Mooney, F.M. Gasparini, Phys. Rev. Lett. 92, 115301–115305 (2004)

    Article  ADS  Google Scholar 

  19. I.D. Rhee, D.J. Bishop, A. Petrou, F.M. Gasparini, Rev. Sci. Inst. 61, 1528–1536 (1990)

    Article  ADS  Google Scholar 

  20. S.R.D. Thomson, J.K. Perron, M.O. Kimball, S. Mehta, F.M. Gasparini, JoVE 83, e51179 (2014)

    Google Scholar 

  21. F.M. Gasparini, M.O. Kimball, S. Mehta, J. Low Temp. Phys. 125, 215–238 (2001)

    Article  ADS  Google Scholar 

  22. J.A. Lipa, D.R. Swanson, J.A. Nissen, Z.K. Geng, P.R. Williamson, D.A. Stricker, T.C.P. Chui, U.L. Israelsson, M. Larson, Phys. Rev. Lett. 84, 4894–4897 (2000)

    Article  ADS  Google Scholar 

  23. J.A. Lipa, J.A. Nissen, D.A. Stricker, D.R. Swanson, T.C.P. Chui, Phys. Rev. B 68, 174518 (2003)

    Article  ADS  Google Scholar 

  24. R. Schmolke, A. Wacker, V. Dohm, D. Frank, Phys. B 165–166, 575–576 (1990)

    ADS  Google Scholar 

  25. I. Rhee, F.M. Gasparini, D.J. Bishop, Phys. Rev. Lett. 63, 410–413 (1989)

    Article  ADS  Google Scholar 

  26. K.P. Mooney, M.O. Kimball, F.M. Gasparini, J. Low Temp. Phys. 134, 607–612 (2004)

    Article  ADS  Google Scholar 

  27. Y.G. Mamaladze, O.D. Cheishvili, Soviet Phys. JETP 23, 112–117 (1966)

    ADS  Google Scholar 

  28. J.K. Perron, F.M. Gasparini, J. Low Temp. Phys. 162, 136–145 (2011)

    Article  ADS  Google Scholar 

  29. S. Mehta, F.M. Gasparini, Phys. Rev. Lett. 78, 2596–2599 (1997)

    Article  ADS  Google Scholar 

  30. J.K. Perron, M.O. Kimball, K.P. Mooney, F.M. Gasparini, J. Phys.: Conf. Ser. 150, 032082–032086 (2010)

    Google Scholar 

  31. V. Privman, P. C. Hohenberg, A (1991). Aharony in Phase Transitions and Critical Phenomena, ed. C. Domb and J. J. Lebowitz (New York; Academic)

  32. J.K. Perron, F.M. Gasparini, Phys. Rev. Lett. 109, 035302 (2012)

    Article  ADS  Google Scholar 

  33. V.J.K. Perron, M.O. Kimball, K.P. Mooney, F.M. Gasparini, Nat. Phys. 6, 499–502 (2010). https://doi.org/10.1038/NPHYS1671

    Article  Google Scholar 

  34. S.R.D. Thomson, J.K. Perron, F.M. Gasparini, Phys. Rev. B 94, 094520 (2016)

    Article  ADS  Google Scholar 

  35. P.G. De Gennes, Rev. Mod. Phys. 35, 225–237 (1964)

    Article  Google Scholar 

  36. F.M. Gasparini, G. Agnolet, J.D. Reppy, Phys. Rev. B 29, 138–149 (1984)

    Article  ADS  Google Scholar 

  37. F. M. Gasparini, I. Rhee (1992). In Progress in Low Temperature Physics, edited by D, F. Brewer (North Holland, New York), 13, 1–90.

Download references

Acknowledgements

The development of direct bonding of silicon wafers for the study of helium confinement; the techniques necessary to stage these at helium temperatures; and, the development of techniques to measure the thermodynamic properties of nanomole samples of helium has been a very long-term project in our laboratory at Buffalo. Students that have been involved in this effort over a period of many years include Ilsu Rhee, Sarabjit Mehta, Mark Kimball, Kevin Mooney, Manuel Diaz-Avila, Justin Perron and Stephen Thomson. I thank them all for their hard work, ingenuity and perseverance. This research could not have been done without the constant support of the National Science Foundation, most recently with DMR-1101189, and the use of the Cornell NanoScale Science and Technology Facility, Project No. 526-94.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis M. Gasparini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasparini, F.M. Confined 4He Near Tλ: Scaling and Giant Proximity Effects. J Low Temp Phys 205, 183–199 (2021). https://doi.org/10.1007/s10909-021-02637-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02637-0

Keywords

Navigation