Skip to main content
Log in

Cumulative Effects of Laser and Spin–Orbit Interaction (SOI) on the Thermal Properties of Quantum Pseudo-dot

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this work, we investigate the cumulative effects of laser and spin–orbit interaction (SOI) on the thermodynamic properties of a quantum pseudo-dot using the Tsallis formalism, through the evaluation of the energy to derive some thermodynamic properties at the accessible states. From the results obtained, we found that contrary to the SOI, a laser field is a suitable external field to reduce the rate of entropy (disorder) in a quantum system, and thus, this allows control on the spin alignment and increasing the number of accessible states hence stabilizing our system, simultaneously reducing the rate of entropy due to the great effect of the laser field. Therefore, the combined effects of laser field and SOI are an important parameter to enhance the thermodynamic quantities and more define the spin alignment of quantum system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.A. Kastner, The single-electron transistor. Rev. Mod. Phys. 64(3), 849 (1992)

    ADS  Google Scholar 

  2. N.F. Johnson, Quantum dots: few-body, low-dimensional systems. J. Phys.: Condens. Matter 7(6), 965 (1995)

    ADS  Google Scholar 

  3. R.C. Ashoori, Electrons in artificial atoms. Nature 379(6564), 413–419 (1996)

    ADS  Google Scholar 

  4. Woggon, U. Optical properties of semiconductor quantum dots, Vol 136(Springer Berlin),p. 103-157 (1997)

  5. Dots, Q. (1998). L. Jacak, P. Hawrylak, and A. Wojs.

  6. D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (John Wiley & Sons, 1999)

    Google Scholar 

  7. S. Mukhopadhyay, A. Chatterjee, Polaronic effects in quantum dots. Acta Phys. Pol. B 32, 473–502 (2001)

    ADS  Google Scholar 

  8. L.P. Kouwenhoven, D.G. Austing, S. Tarucha, Few-electron quantum dots. Rep. Prog. Phys. 64(6), 701 (2001)

    ADS  Google Scholar 

  9. J. Kainz, S.A. Mikhailov, A. Wensauer, U. Rössler, Ground state energies of quantum dots in high magnetic fields: a new approach. Physica E 12(1–4), 888–891 (2002)

    ADS  Google Scholar 

  10. R. Khordad, A. Ghanbari, Effect of phonons on optical properties of RbCl quantum pseudodot qubits. Opt. Quant. Electron. 49(2), 76 (2017)

    Google Scholar 

  11. Y. Sun, J.L. Xiao, The magnetic field effect on the coherence time of qubit in RbCl crystal quantum pseudodot. Opt. Quant. Electron. 51(4), 1–8 (2019)

    Google Scholar 

  12. J.L. Xiao, The effect of Coulomb impurity potential on the coherence time of RbCl quantum pseudodot qubit. J. Low Temp. Phys. 195(5), 442–449 (2019)

    ADS  Google Scholar 

  13. J.L. Xiao, Effect of hydrogen-like impurity on a qubit in quantum pseudodot at finite temperature. Superlattices Microstruct. 125, 233–236 (2019)

    ADS  Google Scholar 

  14. Y. Sun, Z.H. Ding, J.L. Xiao, The effect of phonons in RbCl quantum pseudodot qubits. J. Electron. Mater. 45(7), 3576–3580 (2016)

    ADS  Google Scholar 

  15. R. Khordad, Temperature effect on the threshold frequency of absorption in a quantum pseudodot. Physica B 406(3), 620–623 (2011)

    ADS  Google Scholar 

  16. A.J. Peter, K. Navaneethakrishnan, Effects of position-dependent effective mass and dielectric function of a hydrogenic donor in a quantum dot. Physica E 40(8), 2747–2751 (2008)

    ADS  Google Scholar 

  17. J.J. Sharkey, C. Yoo, A.J. Peter, Magnetic field induced diamagnetic susceptibility of a hydrogenic donor in a GaN/AlGaN quantum dot. Superlattices Microstruct. 48(2), 248–255 (2010)

    ADS  Google Scholar 

  18. R. Khordad, Pressure effect on the threshold frequency of absorption in a quantum pseudodot. Indian J. Phys. 86(7), 653–657 (2012)

    ADS  Google Scholar 

  19. R. Khordad, H. Bahramiyan, H.R. Sedehi, Effects of strain, magnetic field and temperature on entropy of a two dimensional GaAs quantum dot under spin–orbit interaction. Opt. Quant. Electron. 50(7), 1–13 (2018)

    Google Scholar 

  20. R. Khordad, H.R. Sedehi, H. Bahramiyan, Simultaneous effects of impurity and electric field on entropy behavior in double cone-like quantum dot. Commun. Theor. Phys. 69(1), 95 (2018)

    ADS  Google Scholar 

  21. R. Khordad, H.R. Sedehi, Low temperature behavior of thermodynamic properties of 1D quantum wire under the Rashba spin-orbit interaction and magnetic field. Solid State Commun. 269, 118–124 (2018)

    ADS  Google Scholar 

  22. R. Khordad, R. Bornaei, H.A. Mardani-Fard, Application of Tsallis formalism to study entropy and specific heat of V-groove quantum wires. Indian J. Phys. 89(6), 545–550 (2015)

    ADS  Google Scholar 

  23. R. Khordad, B. Vaseghi, Magnetic properties in three electrons under Rashba spin orbit interaction and magnetic field. Int. J. Quant. Chem. 119, 25994 (2019). https://doi.org/10.1002/qua.25994

    Article  Google Scholar 

  24. R. Khordad, Spin-orbit interaction in a quantum pseudodot: pressure effect. J. Comput. Electron. 13(2), 383–393 (2014)

    MathSciNet  Google Scholar 

  25. R. Khordad, B. Vaseghi, Effects temperature, pressure and spin–orbit interaction simultaneously on third harmonic generation of wedge-shaped quantum dots. Chin. J. Phys. 59, 473–480 (2019)

    MathSciNet  Google Scholar 

  26. C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52(1–2), 479–487 (1988)

    ADS  MathSciNet  MATH  Google Scholar 

  27. P. Ehrenfest, T. Ehrenfest. The conceptual foundations of the statistical approach in mechanics. Courier Corporation (1990)

  28. R.C Tolman. The principles of statistical mechanics. Courier Corporation (1979)

  29. Y.M. Guttmann, The Concept of Probability in Statistical Physics (Cambridge University Press, 1999)

    MATH  Google Scholar 

  30. G. Gallavotti. Statistical mechanics: A short treatise. Springer Science & Business Media (2013)

  31. B. H Lavenda, J. Dunning-Davies Additive Entropies of degree-q and the Tsallis Entropy. arXiv preprint physics/0310117 (2003)

  32. B. Das, S. Datta, R. Reifenberger, Zero-field spin splitting in a two-dimensional electron gas. Phys. Rev. B 41(12), 8278 (1990)

    ADS  Google Scholar 

  33. S. Datta, B. Das, Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56(7), 665–667 (1990)

    ADS  Google Scholar 

  34. R. Winkler, Rashba spin splitting in two-dimensional electron and hole systems. Phys. Rev. B 62(7), 4245 (2000)

    ADS  Google Scholar 

  35. X.F. Bai, C. Han, Properties of the internal excited state of the strong-coupling magneto-bipolaron in a parabolic quantum dot. Acta PhysicaSinica 63(2), 027501 (2014)

    Google Scholar 

  36. T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, R. Huber, Coherent terahertz control of antiferromagnetic spin waves. Nat. Photonics 5(1), 31–34 (2011)

    ADS  Google Scholar 

  37. P. Liu, X. Lin, Y. Xu, B. Zhang, Z. Si, K. Cao, W. Zhao, Optically tunable magnetoresistance effect: From mechanism to novel device application. Materials 11(1), 47 (2018)

    ADS  Google Scholar 

  38. A.R. Lima, J.S. Martins, T.J.P. Penna, Monte Carlo simulation of magnetic systems in the Tsallis statistics. Physica A 268(3–4), 553–566 (1999)

    ADS  Google Scholar 

  39. R. Khordad, A. Firoozi, H.R. Sedehi, Simultaneous Effects of Temperature and Pressure on the Entropy and the Specific Heat of a Three-Dimensional Quantum Wire: Tsallis Formalism. J. Low Temp. Phys. 202(1), 185–195 (2021)

    ADS  Google Scholar 

  40. Y. Khoshbakht, R. Khordad, H.R. Sedehi, Magnetic and Thermodynamic Properties of a Nanowire with Rashba Spin-Orbit Interaction. J. Low Temp. Phys. 202(1), 59–70 (2021)

    ADS  Google Scholar 

  41. M. Servatkhah, R. Khordad, A. Firoozi, H.R.R. Sedehi, A. Mohammadi, Low temperature behavior of entropy and specific heat of a three dimensional quantum wire: Shannon and Tsallis entropies. The European Phys. J. B 93(6), 1–7 (2020)

    MathSciNet  Google Scholar 

  42. J.J.S. De Groote, J.E.M. Hornos, A.V. Chaplik, Thermodynamic properties of quantum dots in a magnetic field. Phys. Rev. B 46(19), 12773 (1992)

    ADS  Google Scholar 

  43. P. Hawrylak, Single-electron capacitance spectroscopy of few-electron artificial atoms in a magnetic field: Theory and experiment. Phys. Rev. Lett. 71(20), 3347 (1993)

    ADS  Google Scholar 

  44. B. Boyacioglu, A. Chatterjee, Heat capacity and entropy of a GaAs quantum dot with Gaussian confinement. J. Appl. Phys. 112(8), 083514 (2012)

    ADS  Google Scholar 

  45. Y.Y. Liao, Orientation and heat capacity of horizontally adsorbed molecules in electric fields. Phys. Rev. A 89(2), 022510 (2014)

    ADS  Google Scholar 

  46. K. Kash, A. Scherer, J.M. Worlock, H.G. Craighead, M.C. Tamargo, Optical spectroscopy of ultrasmall structures etched from quantum wells. Appl. Phys. Lett. 49(16), 1043–1045 (1986)

    ADS  Google Scholar 

  47. A. Boda, B. Boyacioglu, U. Erkaslan, A. Chatterjee, Effect of Rashba spin–orbit coupling on the electronic, thermodynamic, magnetic and transport properties of GaAs, InAs and InSb quantum dots with Gaussian confinement. Physica B 498, 43–48 (2016)

    ADS  Google Scholar 

  48. M. K Elsaid, E. Hijaz, . Magnetic susceptibility of coupled double GaAs quantum dot in magnetic fields. Acta PhysicaPolonica, A. 131(6) (2017)

  49. B.S. Kandemir, D. Akay, Tuning the pseudo-Zeeman splitting in graphene cones by magnetic field. J. Magn. Magn. Mater. 384, 101–105 (2015)

    ADS  Google Scholar 

  50. B.S. Kandemir, D. Akay, The effect of electron-phonon coupling in spin–orbit-coupled graphene. Phil. Mag. 97(25), 2225–2235 (2017)

    ADS  Google Scholar 

  51. J.W. Yin, W.P. Li, Y.F. Yu, J.L. Xiao, The Rashba effect on the bound polaron in a parabolic quantum dot. J. Low Temp. Phys. 163(1–2), 53–59 (2011)

    ADS  Google Scholar 

  52. K.J. Oyewumi, B.J. Falaye, C.A. Onate, O.J. Oluwadare, W.A. Yahya, Thermodynamic properties and the approximate solutions of the Schrödinger equation with the shifted Deng-Fan potential model. Mol. Phys. 112(1), 127–141 (2014)

    ADS  Google Scholar 

  53. B. Tang, Y.T. Wang, X.L. Peng, L.H. Zhang, C.S. Jia, Efficient predictions of Gibbs free energy for the gases CO, BF, and gaseous BBr. Journal of Molecular Structure 1199, 126958 (2020)

    Google Scholar 

  54. C.O. Edet, A.N. Ikot, M.C. Onyeaju, U.S. Okorie, G.J. Rampho, M.L. Lekala, S. Kaya, Thermo magnetic properties of the screened Kratzer potential with spatially varying mass under the influence of Aharanov-Bohm (AB) and position-dependent magnetic fields. Physica E: Low-dimens. Syst. Nanostruct. 131, 114710 (2021)

    Google Scholar 

  55. C.S. Jia, R. Zeng, X.L. Peng, L.H. Zhang, Y.L. Zhao, Entropy of gaseous phosphorus dimer. Chem. Eng. Sci. 190, 1–4 (2018)

    Google Scholar 

  56. C.O. Edet, P.O. Amadi, M.C. Onyeaju, U.S. Okorie, R. Sever, G.J. Rampho, A.N. Ikot, Thermal properties and magnetic susceptibility of hellmann potential in Aharonov-Bohm (AB) flux and magnetic fields at zero and finite temperatures. J. Low Temp. Phys. 202(1), 83–105 (2021)

    ADS  Google Scholar 

  57. X.L. Peng, R. Jiang, C.S. Jia, L.H. Zhang, Y.L. Zhao, Gibbs free energy of gaseous phosphorus dimer. Chem. Eng. Sci. 190, 122–125 (2018)

    Google Scholar 

  58. C.S. Jia, C.W. Wang, L.H. Zhang, X.L. Peng, H.M. Tang, R. Zeng, Enthalpy of gaseous phosphorus dimer. Chem. Eng. Sci. 183, 26–29 (2018)

    Google Scholar 

  59. A.N. Ikot, C.O. Edet, P.O. Amadi, U.S. Okorie, G.J. Rampho, H.Y. Abdullah, Thermodynamic properties of Aharanov-Bohm (AB) and magnetic fields with screened Kratzer potential. The European Phys. J. D 74(7), 1–13 (2020)

    Google Scholar 

  60. G.J. Rampho, A.N. Ikot, C.O. Edet, U.S. Okorie, Energy spectra and thermal properties of diatomic molecules in the presence of magnetic and AB fields with improved Kratzer potential. Molec. Phys. 119(5), 1821922 (2021)

    ADS  Google Scholar 

  61. C.S. Jia, L.H. Zhang, X.L. Peng, J.X. Luo, Y.L. Zhao, J.Y. Liu, L.D. Tang, Prediction of entropy and Gibbs free energy for nitrogen. Chem. Eng. Sci. 202, 70–74 (2019)

    Google Scholar 

  62. C.O. Edet, A.N. Ikot, Effects of Topological Defect on the Energy Spectra and Thermo-magnetic Properties of $$ CO $$ CO Diatomic Molecule. J. Low Temp. Phys. 203(1), 84–111 (2021)

    ADS  Google Scholar 

  63. CO Edet, US Okorie, G Osobonye, AN Ikot, GJ Rampho, R Sever J. Mathemat. Chem. 58 989 (2020)

  64. A.N. Ikot, U.S. Okorie, G. Osobonye, P.O. Amadi, C.O. Edet, M.J. Sithole, R. Sever, Superstatistics of Schrödinger equation with pseudo-harmonic potential in external magnetic and Aharanov-Bohm fields. Heliyon 6(4), e03738 (2020)

    Google Scholar 

  65. C.O. Edet, P.O. Amadi, U.S. Okorie, A. Tas, A.N. Ikot, G. Rampho, Solutions of Schrodinger equation and thermal properties of generalized trigonometric Poschl Teller potential. Revista Mexicana de Física 66(6), 824–839 (2020)

    MathSciNet  Google Scholar 

  66. U.S. Okorie, C.O. Edet, A.N. Ikot, G.J. Rampho, R. Sever, Thermodynamic functions for diatomic molecules with modified Kratzer plus screened Coulomb potential. Indian J. Phys. 95, 1–11 (2020)

    Google Scholar 

  67. R. Khordad, A. Avazpour, A. Ghanbari, Exact analytical calculations of thermodynamic functions of gaseous substances. Chem. Phys. 517, 30–35 (2019)

    Google Scholar 

  68. A.N. Ikot, U.S. Okorie, G.J. Rampho, P.O. Amadi, C.O. Edet, I.O. Akpan, R. Horchani, Klein-Gordon equation and Nonrelativistic thermodynamic properties with improved screened Kratzer potential. J. Low Temp. Phys. 202(3), 269–289 (2021)

    ADS  Google Scholar 

  69. B. Donfack, F. Fotio, A.J. Fotue, L.C. Fai, Cumulative effects of temperature, magnetic field and spin orbit interaction (SOI) on the properties of magnetopolaron in RbCl quantum well. Chinese J. Phys. 66, 573–579 (2020)

    ADS  MathSciNet  Google Scholar 

  70. A. Cetin, A quantum pseudodot system with a two-dimensional pseudoharmonic potential. Phys. Lett. A 372(21), 3852–3856 (2008)

    ADS  MATH  Google Scholar 

  71. M.F.C. Fobasso, A.J. Fotue, S.C. Kenfack, C.M. Ekengue, C.D.G. Ngoufack, D. Akay, L.C. Fai, Superlattices Microstruct. 129, 77–90 (2019)

    ADS  Google Scholar 

  72. C. Kenfack-Sadem, F.F. Mbognou, A.J. Fotue, M.N. Hounkonnou, D. Akay, L.C. Fai, Thermodynamic properties and optical absorption of polaron in monolayer graphene under laser field. J. Low Temp. Phys. 203(3), 327–344 (2021)

    ADS  Google Scholar 

  73. S. Gadipelli, Z.X. Guo, Graphene-based materials: synthesis and gas sorption, storage and separation. Progr. Mater. Sci. 69, 1–60 (2015)

    Google Scholar 

  74. A.R. Wright, Junfeng Liu, Zhongshui Ma, Z. Zeng, W. Xu, C. Zhang. Microelectronics J. 40 716 (2009)

  75. R. Nasir, M.A. Khan, M. Tahir, K. Sabeeh, J. Phys. Condens. Matter 22, 025503 (2010)

  76. M.F.C. Fobasso, A.J. Fotue, S.C. Kenfack, G.N. Bawe Jr., D. Akay, L.C. Fai. Phys. Lett A. 382, 3490–3499 (2018)

  77. R. Khordad, Effect of pressure on spin–orbit interaction in a quantum wire with V-shaped cross section. Solid State Sci. 19, 63–68 (2013)

    ADS  Google Scholar 

  78. D. Najafi, B. Vaseghi, G. Rezaei, R. Khordad, Thermodynamics of mono-layer quantum wires with spin-orbit interaction. The European Phys. J. Plus 133(8), 302 (2018)

    ADS  Google Scholar 

  79. B. Donfack, A.J. Fotue, Effects of spin orbit interaction (SOI) on the thermodynamic properties of a quantum pseudodot. J. Low Temp. Phys. 204, 1–17 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Donfack.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donfack, B., Mbognou, F.C.F., Tedondje, G.T. et al. Cumulative Effects of Laser and Spin–Orbit Interaction (SOI) on the Thermal Properties of Quantum Pseudo-dot. J Low Temp Phys 206, 63–79 (2022). https://doi.org/10.1007/s10909-021-02623-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02623-6

Keywords

Navigation