Skip to main content
Log in

The Different Temperature-Dependent Behaviors of Dark Solitons in Fermi Superfluid Gases Along the BCS–BEC Crossover

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We studied the temperature-dependent behavior of dark solitons in superfluid Fermi gases along the BCS–BEC crossover by solving the finite-temperature Bogoliubov-de Gennes equations. The notch depth of the soliton density distribution decreases with the increase in temperature in the whole BCS–BEC crossover. In particular, the notch depth has an obvious different temperature-dependent behavior from the BCS regime to the BEC regime, i.e, it has a concave function in the BCS regime, linear function in the unitary regime and convex function in the BEC regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. T. Köhler, K. Góral, P.S. Julienne, Rev. Mod. Phys. 78(4), 1311 (2006)

    Article  ADS  Google Scholar 

  2. M.W. Zwierlein, J.R. Abo-Shaeer, A. Schirotzek, C.H. Schunck, W. Ketterle, Nature 435, 1047 (2006)

    Article  ADS  Google Scholar 

  3. B. Fröhlich, M. Feld, E. Vogt, M. Koschorreck, W. Zwerger, M. Köhl, Phys. Rev. Lett. 106(10), 105301 (2011)

    Article  ADS  Google Scholar 

  4. K.M. O’Hara, S.L. Hemmer, M.E. Gehm, S.R. Granade, J.E. Thomas, Science 298(5601), 2179 (2002)

  5. T. Bourdel, J. Cubizolles, L. Khaykovich, K.M.F. Magalhãs, S.J.J.M.F. Kokkelmans, G.V. Shlyapnikov, C. Salomon, Phys. Rev. Lett. 91(2), 020402 (2003)

    Article  ADS  Google Scholar 

  6. C. Becker, S. Stellmer, P. Soltan-Panahi, S. Dörscher, M. Baumert, E.-M. Richter, J. Kronjäger, K. Bongs, K. Sengstock, Nat. Phys. 4, 496 (2008)

    Article  Google Scholar 

  7. J. Denschlag, J.E. Simsarian, D.L. Feder, C.W. Clark, L.A. Collins, J. Cubizolles, L. Deng, E.W. Hagley, K. Helmerson, W.P. Reinhardt, S.L. Rolston, B.I. Schneider, W.D. Phillips, Science 287(5450), 97 (2000)

    Article  ADS  Google Scholar 

  8. S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G.V. Shlyapnikov, M. Lewenstein, Phys. Rev. Lett. 83(25), 5198 (1999)

    Article  ADS  Google Scholar 

  9. T. Yefsah, A.T. Sommer, M.J.H. Ku, L.W. Cheuk, W. Ji, W.S. Bakr, M.W. Zwierlein, Nature 499, 426 (2013)

    Article  ADS  Google Scholar 

  10. A. Bulgac, M.M. Forbes, M.M. Kelley, K.J. Roche, G. Wlazlowski, Phys. Rev. Lett. 112(2), 025301 (2014)

    Article  ADS  Google Scholar 

  11. P. Scherpelz, K. Padavi, A. Ranon, A. Glatz, I.S. Aranson, K. Levin, Phys. Rev. Lett. 113(12), 125301 (2014)

    Article  ADS  Google Scholar 

  12. K. Sacha, D. Delande, Phys. Rev. A 90(2), 021604(R) (2014)

    Article  ADS  Google Scholar 

  13. W. Wen, G. Huang, Phys. Rev. A 79(2), 023605 (2009)

    Article  ADS  Google Scholar 

  14. A. Cetoli, J. Brand, R.G. Scott, F. Dalfovo, L.P. Pitaevskii, Phys. Rev. A 88(4), 043639 (2013)

    Article  ADS  Google Scholar 

  15. W. Wen, C. Zhao, X. Ma, Phys. Rev. A 88(6), 063621 (2013)

    Article  ADS  Google Scholar 

  16. R.G. Scott, F. Dalfovo, L.P. Pitaevskii, S. Stringari, Phys. Rev. Lett. 106(18), 185301 (2011)

    Article  ADS  Google Scholar 

  17. R.G. Scott, F. Dalfovo, L.P. Pitaevskii, S. Stringari, O. Fialko, R. Liao, J. Brand, New J. Phys. 14, 023044 (2012)

    Article  ADS  Google Scholar 

  18. D.K. Efimkin, V. Galitski, Phys. Rev. A 91(2), 023616 (2015)

    Article  ADS  Google Scholar 

  19. W. Wen, S. Shen, G. Huang, Phys. Rev. B 81(1), 014528 (2010)

    Article  ADS  Google Scholar 

  20. R.A. Barankov, L.S. Levitov, B.Z. Spivak, Phys. Rev. Lett. 93(16), 160401 (2004)

    Article  ADS  Google Scholar 

  21. A. Roy, Eur. Phys. J. Special Topics 222, 975 (2013)

    Article  ADS  Google Scholar 

  22. L. Kong, G. Fan, S. Peng, X. Chen, H. Zhao, P. Zou, Phys. Rev. A 103(6), 063318 (2021)

    Article  ADS  Google Scholar 

  23. M. Antezza, F. Dalfovo, L.P. Pitaevskii, S. Stringari, Phys. Rev. A 76(4), 043610 (2007)

    Article  ADS  Google Scholar 

  24. S.N. Klimin, J. Tempere, J.T. Devreese, Phys. Rev. A 90(5), 053613 (2014)

    Article  ADS  Google Scholar 

  25. S. Simonucci, P. Pieri, G.C. Strinati, Phys. Rev. B 87(21), 214507 (2013)

    Article  ADS  Google Scholar 

  26. V. Keränen, E. Keski-Vakkuri, S. Nowling, K.P. Yogendran, Phys. Rev. D 80(12), 121901(R) (2009)

    Article  ADS  Google Scholar 

  27. S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 80(4), 1215 (2008)

    Article  ADS  Google Scholar 

  28. X.-J. Liu, Phys. Rev. A 87(1), 013622 (2013)

    Article  ADS  Google Scholar 

  29. M. Randeria, E. Taylor, Annu. Rev. Condens. Matter Phys. 5, 209 (2014)

    Article  ADS  Google Scholar 

  30. P. Zou, H. Hu, X.-J. Liu, Phys. Rev. A 98(1), 011602(R) (2018)

    Article  ADS  Google Scholar 

  31. H. Zhao, X. Gao, W. Liang, P. Zou, F. Yuan, New J. Phys. 22, 093012 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  32. S.N. Artemenko, Gao Xianlong, W. Wonneberger, J. Phys. B 37, S49 (2004)

  33. Y. Wang, J. Voit, F.-C. Pu, Phys. Rev. B 54, 8491 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Peng Zou for helpful discussions. This work was supported by the funds from the National Natural Science Foundation of China under Grant No.11547034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-S. Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, RL., Li, K., Bai, YX. et al. The Different Temperature-Dependent Behaviors of Dark Solitons in Fermi Superfluid Gases Along the BCS–BEC Crossover. J Low Temp Phys 205, 135–142 (2021). https://doi.org/10.1007/s10909-021-02622-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02622-7

Keywords

Navigation