Skip to main content
Log in

Plasmon modes in BLG-GaAs Double-Layer Structures: Temperature Effects

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We consider a double-layer structure consisting of a bilayer graphene sheet and a two-dimensional electron gas, isolated in a very thin GaAs quantum well. The collective excitations are determined from the zeroes of the dynamical dielectric function within the random-phase approximation, taking into account the temperature effects. Numerical calculations present that two plasmon modes exist in the system, similar to those in other double-layer structures. While the optical mode continues in the interband single-particle excitation area, the acoustic mode only crosses the intraband single-particle excitation boundary and disappears. Also, our investigations show that plasmon properties in the system are affected significantly by most of the chosen factors. Plasmon frequency increases as the separation increases while the increase in carrier density decreases noticeably these frequencies. Temperature affects plasmon characters similarly to but more weakly than that does in monolayer grapheme—two-dimensional electron gas double-layer structures. Finally, the temperature can increase the effects of some other parameters on plasmon properties of the system, so this factor should be taken into account in calculations to improve the model for better results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E.H. Hwang, S. Das Sarma, Dielectric function, screening, and plasmons in two-dimensional grapheme. Phys. Rev. B 75, 205418 (2007)

    Article  ADS  Google Scholar 

  2. A.H. CastroNeto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  3. D.S.L. Abergela, V. Apalkovb, J. Berashevicha, K. Zieglerc, T. Chakrabortya, Properties of graphene: a theoretical perspective. Adv. Phys. 59, 261 (2010)

    Article  ADS  Google Scholar 

  4. S. Das Sarma, E.H. Hwang, E. Rossi, Theory of carrier transport in bilayer graphene. Phys. Rev. B 81, 161407 (2010)

    Article  ADS  Google Scholar 

  5. S. DasSarma, S. Adam, E.H. Hwang, E. Rossi, Electronic transport in two dimensional graphene. Rev. Mod. Phys. 83, 407 (2011)

    Article  ADS  Google Scholar 

  6. E. McCann, Electronic Properties of Monolayer and Bilayer Graphene, in Graphene Nanoelectrics. ed. by R. H (NanoScience and Technology Springer, Berlin, 2011)

    Google Scholar 

  7. M. Koshino, T. Ando, Transport in Bilayer Graphene: Calculations within a self-consistent Born approximation. Phys. Rev. B 73, 245403 (2006)

    Article  ADS  Google Scholar 

  8. X.-F. Wang, T. Chakraborty, Coulomb screening and collective excitations in a graphene bilayer. Phys. Rev. B 75, 041404(R) (2007)

    Article  ADS  Google Scholar 

  9. A.K. Geim, A.H. MacDonald, Graphene: Exploring carbon flatland. Phys. Today 60, 35 (2007)

    Google Scholar 

  10. A.K. Geim, K.S. Novoselov, The rise of graphene. Nature Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  11. S.A. Maier, Plasmonics – Fundamentals and Applications (Springer, New York, 2007)

    Book  Google Scholar 

  12. L. Ju et al., Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630 (2011)

    Article  ADS  Google Scholar 

  13. S. A. Mikhailov, Physics and Applications of Graphene – Theory. Croatia: InTech, Janeza Trdine 9, 51000 Rijeka, 2011.

  14. A. Politano, A.R. Marino, V. Formoso, D. Farías, R. Miranda, G. Chiarello, Evidence for acoustic-like plasmons on epitaxial graphene on Pt(111). Phys. Rev. B 84, 033401 (2011)

    Article  ADS  Google Scholar 

  15. A. Principi, M. Polini, G. Vignale, Acoustic plasmons and composite hole-acoustic plasmon satellite bands in graphene on a metal gate. Solid State Commun 151, 1627 (2011)

    Article  ADS  Google Scholar 

  16. C.H. Gan, Analysis of surface plasmon excitation at terahertz frequencies withhighly-doped graphene sheets via attenuated total reflection. Appl. Phys. Lett 101, 111609 (2012)

    Article  ADS  Google Scholar 

  17. A.N. Grigorenko, M. Polini, K.S. Novoselov, Graphene plasmonics. Nature Photonics Rev Artic. 6, 749 (2012)

    Article  ADS  Google Scholar 

  18. H. Yan et al., Tunable infrared plasmonic devices using graphene/insulator stacks. Nature Nanotech. 7, 330 (2012)

    Article  ADS  Google Scholar 

  19. J. Gosciniak, D.T.H. Tan, Graphene-based waveguide integrated dielectric-loaded plasmonic electro-absorption modulators. Nanotechnology 24, 185202 (2013)

    Article  ADS  Google Scholar 

  20. V. Ryzhii, M. Ryzhii, V. Mitin, M.S. Shur, A. Satou, T. Otsuji, Terahertz photomixing using plasma resonances in double-graphene layer structures. J. Appl. Phys. 113, 174506 (2013)

    Article  ADS  Google Scholar 

  21. V. Ryzhii, M. Ryzhii, V. Mitin, M.S. Shur, A. Satou, T. Otsuji, Injection terahertz laser using the resonant inter-layer radiative transitions in double-graphene-layer structure. Appl. Phys. Lett. 103, 163507 (2013)

    Article  ADS  Google Scholar 

  22. B. Sensale-Rodriguez, Graphene-insulator-graphene active plasmonic terahertz devices. Appl. Phys. Lett. 103, 123109 (2013)

    Article  ADS  Google Scholar 

  23. G.X. Ni et al., Fundamental limits of graphene plasmonics. Nature 557, 530 (2018)

    Article  ADS  Google Scholar 

  24. G. Li, V. Semenenko, V. Perebeinos, P.Q. Liu, multilayer graphene terahertz plasmonic structures for enhanced frequency tuning range. ACS Photonics 6(12), 3180 (2019)

    Article  Google Scholar 

  25. A. Politano, L. Viti, M.S. Vitiello, Optoelectronic devices, plasmonics and photonics with topological insulators. APL Mater. 5, 035504 (2017)

    Article  ADS  Google Scholar 

  26. A. Politano, G. Chiarello, Plasmon modes in graphene: status and prospect. Nanoscale 6, 10927 (2014)

    Article  ADS  Google Scholar 

  27. D. Elmaghraoui, A. Politano, S. Jaziri, Photothermal response of plasmonic nanofillers for membrane distillation. J. Chem. Phys. 152, 114102 (2020)

    Article  ADS  Google Scholar 

  28. A. Politano, G. Di-Profio, E. Fontananova, V. Sanna, A. Cupolillo, E. Curcio, Overcoming temperature polarization in membrane distillation by thermoplasmonic effects activated by Ag nanofillers in polymeric membranes. Desalination 451, 192 (2019)

    Article  Google Scholar 

  29. A. Agarwal, M.S. Vitiello, L. Viti, A. Cupolillo, A. Politano, Plasmonics with two-dimensional semiconductors: from basic research to technological applications. Nanoscale 10, 8938 (2018)

    Article  Google Scholar 

  30. L. Viti et al., Plasma-Wave Terahertz Detection Mediated by Topological Insulators Surface States. Nano Lett. 16, 80 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. M. Lv, S. Wan, Screening-induced transport at finite temperature in bilayer graphene. Phys. Rev. B 81, 195409 (2010)

    Article  ADS  Google Scholar 

  32. R. Sensarma, E.H. Hwang, S. DasSarma, Dynamic screening and low energy collective modes in bilayer graphene. Phys. Rev. B 82, 195428 (2011)

    Article  ADS  Google Scholar 

  33. M.R. Ramezanali, M.M. Vazifeh, R. Asgari, M. Polini, A.H. MacDonald, Finite-temperature screening and the specific heat of doped graphene sheets. J. Phys. A Math. Theor 42, 214015 (2009)

    Article  ADS  MATH  Google Scholar 

  34. T. Vazifehshenas, T. Amlaki, M. Farmanbar, F. Parhizgar, Temperature effect on plasmon dispersions in double-layer graphene systems. Phys. Lett. A 374(48), 4899–4903 (2010)

    Article  ADS  Google Scholar 

  35. D.V. Tuan, N.Q. Khanh, Plasmon modes of double-layer graphene at finite temperature. Phys. E. 54, 267–272 (2013)

    Article  Google Scholar 

  36. J.-J. Zhu, S.M. Badalyan, F.M. Peeters, Plasmonic excitations in Coulomb-coupled N-layer graphene structures. Phys. Rev. B 87, 085401 (2013)

    Article  ADS  Google Scholar 

  37. N.V. Men, N.Q. Khanh, D.T.K. Phuong, Plasmon modes in MLG-2DEG heterostructures: Temperature effects. Phys. Lett. A 183, 1364 (2019)

    Article  ADS  Google Scholar 

  38. N.V. Men, D.T.K. Phuong, Plasmon modes in graphene GaAs heterostructures at finite temperature. Int. J. Mod. Phys. B 33(16), 1950174 (2019)

    Article  ADS  Google Scholar 

  39. N.V. Men, N.Q. Khanh, D.T.K. Phuong, Plasmon modes in double-layer gapped graphene. Physica E 118, 113859 (2020)

    Article  Google Scholar 

  40. N.V. Men, N.Q. Khanh, D.T.K. Phuong, Collective excitations in spin-polarized bilayer graphene. J. Phys. Condens. Matter 33, 105301 (2021)

    Article  ADS  Google Scholar 

  41. D.K. Patel, S.S.Z. Ashraf, A.C. Sharma, Temperature dependent screened electronic transport in gapped graphene. Phys. Stat. Sol. B 252(8), 1817 (2015)

    Article  ADS  Google Scholar 

  42. D.K. Patel, S.S.Z. Ashraf, A.C. Sharma, Finite temperature dynamical polarization and plasmons in gapped graphene. Phys. Stat. Sol. B 252(2), 282 (2015)

    Article  ADS  Google Scholar 

  43. S.M. Badalyan, F.M. Peeters, Effect of nonhomogenous dielectric background on the plasmon modes in graphene double-layer structures at finite temperatures. Phys. Rev. B 85(19), 195444 (2012)

    Article  ADS  Google Scholar 

  44. N.V. Men, N.Q. Khanh, Plasmon modes in graphene–GaAs heterostructures. Phys. Lett. A 381(44), 3779–3784 (2017)

    Article  ADS  Google Scholar 

  45. N.Q. Khanh, N.V. Men, Plasmon modes in bilayer-monolayer graphene heterostructures. Phys. Status Solidi B 255(7), 1700656 (2018)

    Article  Google Scholar 

  46. N.V. Men, N.Q. Khanh, Plasmon modes in Dirac/Schrӧdinger hybrid electron systems including layer-thickness and exchange-correlation effects. Can. J. Phys. 96(6), 615–621 (2018)

    Article  ADS  Google Scholar 

  47. N.V. Men, D.T.K. Phuong, Plasmon modes in bilayer-graphene-GaAs heterostructures including layer-thickness and exchange-correlation effects. Int. J. Mod. Phys. B 32(23), 1850256 (2018)

    Article  ADS  Google Scholar 

  48. N.V. Men, N.Q. Khanh, D.T.K. Phuong, Plasmon modes in N-layer bilayer graphene structures. Solid State Commun. 298, 113647 (2019)

    Article  Google Scholar 

  49. D.T.K. Phuong, N.V. Men, Plasmon modes in 3-layer graphene structures: Inhomogeneity effects. Phys. Lett. A 383, 125971 (2019)

    Article  Google Scholar 

  50. N.V. Men, Plasmon modes in N-layer gapped graphene. Phys. B 578, 411876 (2020)

    Article  Google Scholar 

  51. N.V. Men, D.T.K. Phuong, Plasmon modes in double-layer gapped graphene at zero temperature. Phys. Lett. A 384, 126221 (2020)

    Article  Google Scholar 

  52. E.H. Hwang, S. DasSarma, Exotic plasmon modes of double layer graphene. Phys. Rev. B 80, 205405 (2009)

    Article  ADS  Google Scholar 

  53. K. Flensberg, B.Y.-K. Hu, Plasmon enhancement of Coulomb drag in double-quantum-well systems. Phys. Rev. B 52, 14796 (1995)

    Article  ADS  Google Scholar 

  54. A. Principi, M. Carrega, R. Asgari, V. Pellegrini, M. Polini, Plasmons and Coulomb drag in Dirac/Schroedinger hybrid electron systems. Phys. Rev. B 86, 085421 (2012)

    Article  ADS  Google Scholar 

  55. B. Scharf, A. Matos-Abiague, Coulomb drag between massless and massive fermions. Phys. Rev. B 86, 115425 (2012)

    Article  ADS  Google Scholar 

  56. A. Politano, G. Chiarello, Unravelling suitable graphene-metal contacts for graphene-based plasmonic devices. Nanoscale 5, 8215 (2013)

    Article  ADS  Google Scholar 

  57. A. Cupolillo, A. Politano, N. Ligato, D.M. Cid-Perez, G. Chiarello, L.S. Caputi, Substrate-dependent plasmonic properties of supported graphene. Surf. Sci. 634, 76 (2015)

    Article  ADS  Google Scholar 

  58. N.V. Men, D.T.K. Phuong, Temperature effects on plasmon modes in double-bilayer graphene structures. Solid State Comm. 334–335, 114398 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by An Giang University, Vietnam National University Ho Chi Minh City under grant number “21.05.SP”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van-Men Nguyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, VM., Dong, KP.T. Plasmon modes in BLG-GaAs Double-Layer Structures: Temperature Effects. J Low Temp Phys 205, 45–54 (2021). https://doi.org/10.1007/s10909-021-02615-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02615-6

Keywords

Navigation