Skip to main content
Log in

Ground-State Properties of Rotating Binary Spin–Orbit-Coupled Bose Gas with Mass Imbalance

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this paper, we study the ground state of a binary rotating Bose–Einstein condensate with unequal atomic masses. The results are obtained by numerically solving the Gross–Pitaevskii equation. We conclude that the vortex configuration strongly depends on the strength of spin–orbit coupled, rotational frequency as well as on the ratio of atomic mass. A series changes of vortex structure from a single central, triangular, hexagon to linear vortex string are found. In addition, the vortex necklace, giant vortex and linear hidden vortex are observed. Our results are helpful for understanding the artificial gauge field of the binary rotating ultracold Bose gas under realistic imbalanced condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y.-J. Lin, R. L. Compton, K. Jiménez-García, J. V. Porto, I. B. Spielman, Nature (London) 462, 628 (2009)

    Article  ADS  Google Scholar 

  2. Y.-J. Lin, R.L. Compton, A.R. Perry, W.D. Phillips, J.V. Porto, I.B. Spielman, Phys. Rev. Lett. 102, 130401 (2009)

    Article  ADS  Google Scholar 

  3. Y.-J. Lin, R. L. Compton, K. Jiménez-García, W. D. Phillips, J. V. Porto, I. B. Spielman, Nat. Phys. 7, 531 (2011)

    Article  Google Scholar 

  4. B.M. Anderson, G. Juzeliūnas, V.M. Galitski, I.B. Spielman, Phys. Rev. Lett. 108, 235301 (2012)

    Article  ADS  Google Scholar 

  5. Z. Fu, L. Huang, Z. Meng, P. Wang, L. Zhang, S. Zhang, H. Zhai, P. Zhang, J. Zhang, Nat. Phys. 10, 110 (2014)

    Article  Google Scholar 

  6. D.L. Campbell, G. Juzeliūnas, I.B. Spielman, Phys. Rev. A 84, 025602 (2011)

    Article  ADS  Google Scholar 

  7. J. Dalibard, F. Gerbier, G. Juzeliūnas, P. Öhberg, Rev. Mod. Phys. 83, 1523 (2011)

    Article  ADS  Google Scholar 

  8. D. Xiao, M.C. Chang, Q. Niu, Rev. Mod. Phys. textbf82, 1959 (2010)

    Article  ADS  Google Scholar 

  9. X. L. Qi, S. C. Zhang, Rev. Mod. Phys. textbf83, 1057 (2011)

    Article  ADS  Google Scholar 

  10. N. Read, D. Green, Phys. Rev. B 61, 10267 (2000)

    Article  ADS  Google Scholar 

  11. Y.-J. Lin, K. Jiménez-García, I. B. Spielman, Nature (London) 471, 83 (2011)

    Article  ADS  Google Scholar 

  12. L. Huang, Z. Meng, P. Wang, P. Peng, S. L. Zhang, L. Chen, D. Li, Q. Zhou, J. Zhang, Nat. Phys. 12, 540 (2016)

    Article  Google Scholar 

  13. Z. Wu, L. Zhang, W. Sun, X. T. Xu, B. Z. Wang, S. C. Ji, Y. Deng, S. Chen, X. J. Liu, J. W. Pan, Science 354, 83 (2016)

    Article  ADS  Google Scholar 

  14. K. Jiménez-García, L.J. LeBlanc, R.A. Williams, M.C. Beeler, C. Qu, M. Gong, C. Zhang, I.B. Spielman, Phys. Rev. Lett. 114, 125301 (2015)

    Article  ADS  Google Scholar 

  15. D. Pȩcak, T. Sowiński, Phys. Rev. A 99, 043612 (2019)

    Article  ADS  Google Scholar 

  16. D. Włodzyński, D. Pȩcak, T. Sowiński, Phys. Rev. A 101, 023604 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  17. U. Toniolo, B. Mulkerin, X.J. Liu, H. Hu, Phys. Rev. A 95, 013603 (2017)

    Article  ADS  Google Scholar 

  18. K. Manabe, D. Inotani, Y. Ohashi, Phys. Rev. A 100, 063609 (2019)

    Article  ADS  Google Scholar 

  19. B. Parajuli, D. Pȩcak, C.C. Chien, Phys. Rev. A 100, 063623 (2019)

    Article  ADS  Google Scholar 

  20. C.F. Liu, G. Juzeliūnas, W.M. Liu, Phys. Rev. A 95, 023624 (2017)

    Article  ADS  Google Scholar 

  21. C.F. Liu, H. Fan, Y.C. Zhang, D.S. Wang, W.M. Liu, Phys. Rev. A 86, 053616 (2012)

    Article  ADS  Google Scholar 

  22. J.G. Wang, Y.Q. Li, Results. Phys. 17, 103099 (2020)

    Article  ADS  Google Scholar 

  23. B. Dong, L. X. Wang, G. P. Chen, W. Han, S. G. Zhang, X. F. Zhang, Ann Phys 373, 178 (2016)

    Article  ADS  Google Scholar 

  24. R. Kishor Kumar, A. Gammal, L. Tomio, Phys. Lett. A 384, 126535 (2020)

    Article  MathSciNet  Google Scholar 

  25. X. C. Yao, H. Z. Chen, Y. P. Wu, X. P, Liu, X. Q. Wang, X. Jiang, Y. J. Deng, Y. A. Chen, J. W. Pan, Phys. Rev. Lett. 117, 145301 (2016)

    Article  ADS  Google Scholar 

  26. L. X. Wang, B. Dong, G. P. Chen, W. Han, S. G. Zhang, Y. R. Shi, X. F. Zhang, Phys. Lett. A 380, 435 (2016)

    Article  ADS  Google Scholar 

  27. J.J. Jin, W. Han, S.Y. Zhang, Phys. Rev. A 98, 063607 (2018)

    Article  ADS  Google Scholar 

  28. W. Bao, H.Q. Wang, P. A. Markowich, Comm. Math. Sci. 3, 57 (2005)

    Article  Google Scholar 

  29. B. Gertjerenken, P.G. Kevrekidis, R. Carretero-González, B.P. Anderson, Phys. Rev. A 93, 023604 (2016)

    Article  ADS  Google Scholar 

  30. G. Thalhammer, G. Barontini, L. De Sarlo, J. Catani, F. Minardi, M. Inguscio, Phys. Rev. Lett. 100, 210402 (2008)

    Article  ADS  Google Scholar 

  31. C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010)

    Article  ADS  Google Scholar 

  32. K. W. Madison, F. Chevy, W. Wohlleben, J. Dalibard, Phys. Rev. Lett. 84, 806 (2000)

    Article  ADS  Google Scholar 

  33. J. G. Wang, L. L. Xu, S. J. Yang, Europhys Lett 120, 20006 (2017)

    Article  ADS  Google Scholar 

  34. M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, E. A. Cornell, Phys. Rev. Lett. 83, 2498 (1999)

    Article  ADS  Google Scholar 

  35. S.K. Adhikari, Laser Phys. Lett. 16, 085501 (2019)

    Article  ADS  Google Scholar 

  36. X.Q. Xu, J.H. Han, Phys. Rev. Lett. 107, 200401 (2011)

    Article  ADS  Google Scholar 

  37. X.F. Zhou, J. Zhou, C.J. Wu, Phys. Rev. A 84, 063624 (2011)

    Article  ADS  Google Scholar 

  38. K. Kasamatsu, M. Tsubota, M. Ueda, Phys. Rev. A 67, 033610 (2003)

    Article  ADS  Google Scholar 

  39. A. L. Fetter, Rev. Mod. Phys. 81, 647 (2009)

    Article  ADS  Google Scholar 

  40. C.F. Liu, Y.M. Yu, S.C. Gou, W.M. Liu, Phys. Rev. A 87, 063630 (2013)

    Article  ADS  Google Scholar 

  41. L.H. Wen, H.W. Xiong, B. Wu, Phys. Rev. A 82, 053627 (2010)

    Article  ADS  Google Scholar 

  42. T. Mithun, K. Porsezian, B. Dey, Phys. Rev. A 89, 053625 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the PhD Start-up Fund (Grant No. BS2017096) of North China University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Bi, H. Ground-State Properties of Rotating Binary Spin–Orbit-Coupled Bose Gas with Mass Imbalance. J Low Temp Phys 205, 1–10 (2021). https://doi.org/10.1007/s10909-021-02613-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02613-8

Keywords

Navigation