Skip to main content
Log in

Quantum Phase Transition and Quantum Correlation in the Two-dimensional Honeycomb-bilayer Lattice Antiferromagnet

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Quantum correlation in the spin-1/2 two-dimensional honeycomb-bilayer lattice antiferromagnet and spin-1 honeycomb-bilayer two-dimensional XY model is studied. For the spin-1 XY model, the calculations were performed taking into account the next-nearest neighbor interactions \(J_2\) and the single-ion anisotropy term D in the easy-axis regime (large D) using the Schwinger boson approach. For the two-dimensional antiferromagnetic model at \(D=0\), we use linear spin waves and Schwinger bosons. For the phase large D (\(D>D_c\)), we investigate the effect of the behavior of the critical line of the graphic \(D_{c}\) versus \(J_{\perp c}/J_1\) and \(J_{2 c}/J_1\) on quantum correlation, where the system suffers a quantum phase transition Néel-paramagnetic

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R.A. Muniz, Y. Kato, C.D. Batista, Prog. Theor. Exp. Phys. 083101, 083101 (2014)

    Google Scholar 

  2. S. Nakatsuji, Y. Nambu, H. Tonomura, O. Sakai, S. Jonas, C. Broholm, H. Tsunetsugu, T. Qju, Y. Maeno, Science 309, 1697 (2005)

    Article  ADS  Google Scholar 

  3. H. Zhang, M. Arlego, C.A. Lamas, Phys. Rev. B 89, 024403 (2014)

    Article  ADS  Google Scholar 

  4. R.F. Bishop, P.H.Y. Li, Phys. Rev. B 95, 134414 (2017)

    Article  ADS  Google Scholar 

  5. H. Zhang, C.A. Lamas, M. Arlego, W. Brenig, Phys. Rev. B 97, 235123 (2018)

    Article  ADS  Google Scholar 

  6. A.S.T. Pires, Physica E 109, 67 (2019)

    Article  ADS  Google Scholar 

  7. J. Carrasquila, A. Di Giolo, F. Becca Galitski, V. M. Rigol, Phys. Rev. B 88: 24119 (2013)

  8. Z. Zhu, S.R. White, Mod. Phys. Lett. 28, 1430016 (2014)

    Article  ADS  Google Scholar 

  9. Z. Zhu, D.A. Huse, S.R. White, Phys. Rev. Lett. 111, 257201 (2013)

    Article  ADS  Google Scholar 

  10. L.S. Lima, J. Low Temp. Phys. 198, 241 (2020)

    Article  ADS  Google Scholar 

  11. A. Auerbach, D.P. Arovas, Phys. Rev. Lett. 61, 617 (1988)

    Article  ADS  Google Scholar 

  12. D.P. Arovas, A. Auerbach, Phys. Rev. B 38, 316 (1988)

    Article  ADS  Google Scholar 

  13. A. Auerbach, Interacting Electrons and Quantum Magnetism (Springer, New York, 1994)

    Book  Google Scholar 

  14. A.S.T. Pires, L.S. Lima, M.E. Gouvêa, J. Phys.: Condens. Matter 20, 015208 (2008)

    ADS  Google Scholar 

  15. H. Zhang, M. Arlego, C.A. Lamas, Phys. Rev. B 89, 024403 (2014)

    Article  ADS  Google Scholar 

  16. N. Papanicolaou, Nuclear Phys. B 305, 367 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  17. M.A. Nielsen, Quant-Ph/0011036 (New Mexico, USA, 1998)

    Google Scholar 

  18. G. Vidal, J. I. Latorre, E. Rico, A. Kitaev, Phys. Rev. Lett. quant-ph/0211074

  19. D. Bruss, F. Leuchs, Lectures on Quantum Information (WILEY-VCH Verlag, Weinheim, Germany, 2007)

    MATH  Google Scholar 

  20. A.R. Its, B.-Q. Jin, V.E. Korepin, J. Phys. A: Math. Gen. 38, 2975 (2005)

    Article  ADS  Google Scholar 

  21. S. Sachdev, Quantum Phase Transitions, 2nd edn. (Cambridge U.K., 2011)

  22. D. Bianchini, O. A. Castro-Alvaredo, B. Doyon, E. Levi, F. Ravanini, J. Phys. A: Math. Theor. 48 04FT01 (2015)

  23. G. Vidal, J.L. Latorre, E.I. Rico, A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  24. J.I. Latorre, E. Rico, G. Vidal, Quant. Inf. Comput. 4, 48 (2004)

    Google Scholar 

  25. P. Calabrense, J. Cardy, Physica A 504, 31 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  26. S. Hill, W.K. Wooters, Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  27. W.K. Wooters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  28. X. Wang, P. Zanardi, Phys. Lett. A 301, 1 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  29. L. Gálisová, J. Phys.: Condens. Matter 31, 465801 (2019)

    ADS  Google Scholar 

  30. N. Laflorencie, Physics Reports 646, 1 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. K.H. Norwich, Physica A 462, 141 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  32. L.S. Lima, Physica A 483, 239 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  33. L.S. Lima, Physica A 492, 1853 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  34. Leonardo S. Lima, Eur. Phys. J. D 73, 6 (2019)

    Article  ADS  Google Scholar 

  35. L.S. Lima, J. Low Temp. Phys. 201, 515 (2020)

    Article  ADS  Google Scholar 

  36. Leonardo S. Lima, Eur. Phys. J. D 73, 242 (2019)

    Article  ADS  Google Scholar 

  37. T.J. Osborne, A. Michael, A. Nielsen, Phys. Rev. A 66, 032110 (2002)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Lima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, L.S. Quantum Phase Transition and Quantum Correlation in the Two-dimensional Honeycomb-bilayer Lattice Antiferromagnet. J Low Temp Phys 205, 112–125 (2021). https://doi.org/10.1007/s10909-021-02610-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02610-x

Keywords

Navigation