Skip to main content
Log in

Preparation and Superconducting Properties of Nb3Sn by Mechanical Alloying

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The Nb3Sn was successfully prepared by a fast and convenient method in which the mixture of the Nb, Sn, and Cu powder was mechanically alloyed followed by heat treatment. The morphology, crystal structure, and critical temperature were measured by SEM, XRD, and VSM. The results show that with increased milling time, the size of the powders becomes increasingly homogeneous and uniform. The addition of copper to the blended powder makes it easier to form the final Nb3Sn. With the increase of milling time, the particle size and crystallite size decreased, and the tin diffraction peaks disappeared when the milling time was more than 3 h. The effect of surfactants on the process of milling was studied. The phenomenon of adhering to the wall was relieved when even a small amount of stearic acid was introduced into the reactants. After the process of milling, the time needed for heat treatment was greatly reduced; it only needed a few hours at the maximum temperature stage. The critical temperature of the products is over 17 K after a heat treatment of only 1 h, which greatly reduces the time and cost of the heat treatment process, indicating that the as-prepared products have potential applications for preparing Nb3Sn superconducting materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9

Similar content being viewed by others

References

  1. P. McIntyre, Y. Wu, G. Liang et al., Study of Nb3Sn superconducting joints for very high magnetic field NMR spectrometers. IEEE Trans. Appl. Supercond. 5, 238–241 (1995). https://doi.org/10.1109/77.402533

    Article  ADS  Google Scholar 

  2. D.R. Dietderich, A. Godeke, Godeke, A: Nb3Sn research and development in the USA–Wires and cables. Cryogenics 48, 331–340 (2008). https://doi.org/10.1016/j.cryogenics.2008.05.004

    Article  ADS  Google Scholar 

  3. N. Banno, Y. Miyamoto, K. Tachikawa, Microstructural study of brass matrix internal tin multifilamentary Nb3Sn superconductors. Phys. C 546, 55–60 (2018). https://doi.org/10.1016/j.physc.2017.12.010

    Article  ADS  Google Scholar 

  4. S. Oh, S.H. Park, C. Lee, H. Choi, K. Kim, Heat treatment effect on the strain dependence of the critical current for an internal-tin processed Nb3Sn strand. Phys. C 470, 129–133 (2010). https://doi.org/10.1016/j.physc.2009.11.062

    Article  ADS  Google Scholar 

  5. V. Abächerli, D. Uglietti, B. Seeber, R. Flükiger, (Nb, Ta, Ti) 3Sn multifilamentary wires using Osprey bronze with high tin content and NbTa/NbTi composite filaments. Phys. C 372, 1325–1328 (2002). https://doi.org/10.1016/S0921-4534(02)01020-1

    Article  ADS  Google Scholar 

  6. J. Cheng, Q. Wang, H. Wang, Y. Dai, Microstructure evolution of Nb3Sn superconductors during diffusion treatment by bronze route. Rare Met. 31, 446–450 (2012). https://doi.org/10.1007/s12598-012-0537-0

    Article  Google Scholar 

  7. X. Wu, X. Peng, M.D. Sumption, M. Tomsic, E. Gregory, E.W. Collings, Ti and Sn diffusion and its influence on phase formation in internal-tin Nb3Sn superconductor strands. IEEE Trans. Appl. Supercond. 15, 3399–3402 (2005). https://doi.org/10.1109/TASC.2005.848921

    Article  ADS  Google Scholar 

  8. M.B. Field, Y. Zhang, H. Miao, M. Gerace, J.A. Parrell, Optimizing Nb3Sn conductors for high field applications. IEEE Trans. Appl. Supercond. 24, 1–5 (2013). https://doi.org/10.1109/TASC.2013.2285314

    Article  Google Scholar 

  9. X.F. Lu, D.P. Hampshire, The field, temperature and strain dependence of the critical current density of a powder-in-tube Nb3Sn superconducting strand. Supercond. Sci. Technol. 23, 025002 (2009). https://doi.org/10.1088/0953-2048/23/2/025002

    Article  ADS  Google Scholar 

  10. M. Di Michiel, C. Scheuerlein, Phase transformations during the reaction heat treatment of powder-in-tube Nb3Sn superconductors. Supercond. Sci. Technol. 20, L55 (2007). https://doi.org/10.1088/1742-6596/234/2/022032

    Article  Google Scholar 

  11. D.P. Hampshire, H. Jones, The detailed investigation of the critical current density of optimized Nb3Sn modified jelly roll wire throughout its entire superconducting phase including a comparative study with a similar non-optimized composite. Phys. Status Solidi B 141, 229–237 (1987). https://doi.org/10.1002/pssb.2221410122

    Article  ADS  Google Scholar 

  12. G. Ambrosio, N. Andreev, M. Anerella, E. Barzi, B. Bingham, D. Bocian et al., Final development and test preparation of the first 3.7 m long Nb3Sn quadrupole by LARP. IEEE Trans. Appl. Supercond. 20, 283–287 (2010). https://doi.org/10.1109/TASC.2010.2040471

    Article  ADS  Google Scholar 

  13. E. Barzi, E. Gregory, T. Pyon, Heat treatment optimization of internal tin Nb3Sn strands. IEEE Trans. Appl. Supercond. 11, 3573–3576 (2001). https://doi.org/10.1109/77.919836

    Article  ADS  Google Scholar 

  14. J.S. Cheng, Q.L. Wang, Y.M. Dai, H. Wang, S.S. Song, Characterization and analysis of microstructures of Nb3Sn multifilamentary superconductors during diffusion treatment by bronze route. Rare Met. Mater. Eng. 37, 189–192 (2008). https://doi.org/10.1007/s12598-012-0537-0

    Article  Google Scholar 

  15. K. Zhang, P.X. Zhang, Y.G. Shi, J.W. Liu, H.X. Gao, J.J. Jia et al., An investigation into the heat treatment tolerance of WST Nb3Sn strands produced for massive fusion coils. IEEE Trans. Appl. Supercond. 25, 1–6 (2015). https://doi.org/10.1109/TASC.2015.2493118

    Article  Google Scholar 

  16. I. Pong, L.R. Oberli, L. Bottura, Cu diffusion in Nb3Sn internal tin superconductors during heat treatment. Supercond. Sci. Technol. 26, 105002 (2013). https://doi.org/10.1088/0953-2048/26/10/105002

    Article  ADS  Google Scholar 

  17. H. Müller, T. Schneider, Optimization of the heat treatment of Nb3Sn -superconductors. Phys. C 401, 325–329 (2004). https://doi.org/10.1016/j.physc.2003.09.064

    Article  ADS  Google Scholar 

  18. P. He, Z.M. Chen, W.G. Chen, G.L. Kuang, Z.Y. Chen, P.C. Huang, Heat treatment study of Nb3Sn CICC. J. Supercond. Novel Magn. 25, 1805–1810 (2012). https://doi.org/10.1007/s10948-012-1554-9

    Article  Google Scholar 

  19. S.N. Patankar, F.H. Froes, Formation of Nb3Sn using mechanically alloyed Nb-Sn powder. Solid State Sci. 6, 887–890 (2004). https://doi.org/10.1002/chin.200443023

    Article  ADS  Google Scholar 

  20. M.A. Menary, The Effect of Mechanical Alloying on the Structural and Superconducting Properties of Nb3Sn (2005)

  21. N.S. Sitaraman, T.A. Arias, P.D. Cueva, M.M. Kelley, R.D. Porter, Z. Sun et al., Ab initio calculations on the growth and superconducting properties of Nb3Sn. (2020). doi:https://doi.org/10.18429/JACoW-SRF2019-MOP010

  22. M.M. Kelley, N.S. Sitaraman, T.A. Arias, Ab initio theory of the impact of grain boundaries and substitutional defects on superconducting Nb3Sn. Supercond. Sci. Technol. 34(1), 015015 (2020). https://doi.org/10.1088/1361-6668/abc8ce

    Article  Google Scholar 

  23. P.R. Nair, R. Paramasivam, An analysis of the influence of grinding aids on the breakage process of calcite in media mills. Adv. Powder Technol. 10, 223–243 (1999). https://doi.org/10.1163/156855299X00316

    Article  Google Scholar 

  24. M.J.R. Sandim, D. Tytko, A. Kostka, P. Choi, S. Awaji, K. Watanabe, D. Raabe, Grain boundary segregation in a bronze-route Nb3Sn superconducting wire studied by atom probe tomography. Supercond. Sci. Technol. 26(5), 055008 (2013). https://doi.org/10.1088/0953-2048/26/5/055008

    Article  ADS  Google Scholar 

  25. J. Lee, S. Posen, Z. Mao, Y. Trenikhina, K. He, D.L. Hall, M. Liepe, D.N. Seidman, Atomic scale analysis of Nb3Sn on Nb prepared by a vapor-diffusion process for superconducting radiofrequency cavity applications. arXiv preprint arXiv:1807.03898 (2018)

  26. E. Helfand, N.R. Werthamer, Temperature and purity dependence of the superconducting critical field, H c 2. Phys. Rev. Lett. 13(23), 686 (1964). https://doi.org/10.1103/PhysRevLett.13.686

    Article  ADS  MATH  Google Scholar 

  27. C.P. Bean, Magnetization of High-Field Superconductors. Rev. Modern Phys. 36(1), 31 (1964). https://doi.org/10.1103/RevModPhys.36.31

    Article  ADS  Google Scholar 

  28. R. Lal, Effect of spin paramagnetism on upper critical field of disordered nanocrystalline PbMo6S8 superconductor. Phys. C 469(7–8), 265–267 (2009). https://doi.org/10.1016/j.physc.2009.02.010

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunzhong Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Cheng, J. & Chen, S. Preparation and Superconducting Properties of Nb3Sn by Mechanical Alloying. J Low Temp Phys 205, 100–111 (2021). https://doi.org/10.1007/s10909-021-02608-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02608-5

Keywords

Navigation