Skip to main content
Log in

Modeling of Vibration and Drift Behaviors Triggered by Environmental Factors in a Superconducting Maglev with Thermal-Electromagnetic Interaction

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

During the operation of a high-temperature superconducting maglev system, external factors, such as crosswind, rain and earthquake, will cause some changes in the levitation and guidance forces and even an undesirable modification of the levitation point. The dynamic behavior is, thus, essential for the maglev and must be well understood. According to Newton’s second law, the thermal diffusion equation, Maxwell’s equations and a nonlinear power-law constitutive relation, a 2D thermal-electromagnetic coupling model is built to study the dynamics of an actual superconducting maglev under environmental loads. It is assumed that after a zero-field-cooled bulk superconductor slowly descends to a working height above a permanent-magnet guideway, its dynamic motion will be triggered by external disturbance or excitation. The influences of the amplitude and frequency of periodic external disturbance exerted on the guideway, and the magnitude and direction of external excitation applied on the superconductor on the vibration characteristics, including the drift phenomenon occurring in both vertical and lateral directions and temperature evolution, are fully analyzed. Moreover, the resonance phenomenon induced by these external factors is predicted, tending to aggravate the local temperature rise and levitation drift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F.N. Werfel, U. Floegel-Delor, R. Rothfeld, T. Riedel, B. Goebel, D. Wippich, P. Schirrmeister, Supercond. Sci. Technol. 25, 014007 (2012)

    Article  ADS  Google Scholar 

  2. T. Hikihara, F.C. Moon, Physica C 250, 121 (1995)

    Article  ADS  Google Scholar 

  3. T.A. Coombs, A.M. Campbell, Physica C 256, 298 (1996)

    Article  ADS  Google Scholar 

  4. J. Wang, S. Wang, Y. Zeng, H. Huang, F. Luo, Z. Xu, Q. Tang, G. Lin, C. Zhang, Z. Ren, G. Zhao, D. Zhu, S. Wang, H. Jiang, M. Zhu, C. Deng, P. Hu, C. Li, F. Liu, J. Lian, X. Wang, L. Wang, X. Shen, X. Dong, Physica C 378–381, 809 (2002)

    Article  ADS  Google Scholar 

  5. L. Schultz, O. de Haas, P. Verges, C. Beyer, S. Rohlig, H. Olsen, L. Kuhn, D. Berger, U. Noteboom, U. Funk, IEEE Trans. Appl. Supercond. 15, 2301 (2005)

    Article  ADS  Google Scholar 

  6. G.G. Sotelo, R.A.H. de Oliveira, F.S. Costa, D.H.N. Dias, R. de Andrade, R.M. Stephan, IEEE Trans. Appl. Supercond. 25, 3601005 (2015)

    Article  Google Scholar 

  7. N. Del-Valle, S. Agramunt-Puig, C. Navau, A. Sanchez, J. Appl. Phys. 111, 013921 (2012)

    Article  ADS  Google Scholar 

  8. G.G. Sotelo, D.H.N. Dias, R. de Andrade, R.M. Stephan, N. Del-Valle, A. Sanchez, C. Navau, D.X. Chen, IEEE Trans. Appl. Supercond. 21, 3532 (2011)

    Article  ADS  Google Scholar 

  9. C. Navau, N. Del-Valle, A. Sanchez, IEEE Trans. Appl. Supercond. 23, 8201023 (2013)

    Article  ADS  Google Scholar 

  10. K. Ozturk, S.B. Guner, M. Abdioglu, M. Demirci, S. Celik, A. Cansiz, J. Alloys Compd. 805, 1208 (2019)

    Article  Google Scholar 

  11. C.G. Huang, Y.H. Zhou, Supercond. Sci. Technol. 28, 035005 (2015)

    Article  ADS  Google Scholar 

  12. A.N. Terentiev, A.A. Kuznetsov, Physica C 195, 41 (1992)

    Article  ADS  Google Scholar 

  13. Y. Komano, E. Ito, K. Sawa, Y. Iwasa, T. Ichihara, N. Sakai, I. Hirabayashi, M. Murakami, Physica C 426–431, 789 (2005)

    Article  ADS  Google Scholar 

  14. W. Lei, L. Chen, W. Wang, Z. Liu, Z. Huang, Z. Deng, Supercond. Sci. Technol. 33, 084002 (2020)

    Article  ADS  Google Scholar 

  15. X.F. Gou, X.J. Zheng, Y.H. Zhou, IEEE Trans. Appl. Supercond. 17, 3795 (2007)

    Article  ADS  Google Scholar 

  16. X.F. Gou, X.J. Zheng, Y.H. Zhou, IEEE Trans. Appl. Supercond. 17, 3803 (2007)

    Article  ADS  Google Scholar 

  17. L. Alloui, K.B. Alia, F. Bouillault, S.M. Mimoune, L. Bernard, J. Lévêque, Numerical study of the relation between the thermal effect and the stability of the levitation system excited by an external source. Physica C: Supercond. 487, 1–10 (2013)

    Article  ADS  Google Scholar 

  18. F. Grilli, A. Morandi, F. De Silvestri, R. Brambilla, Supercond. Sci. Technol. 31, 125003 (2018)

    Article  ADS  Google Scholar 

  19. C. Ye, W. Yang, T. Gong, G. Ma, IEEE Trans. Appl. Supercond. 30, 2942276 (2020)

    ADS  Google Scholar 

  20. L. Quéval, K. Liu, W. Yang, V.M.R. Zermeno, G. Ma, Supercond. Sci. Technol. 31, 084001 (2018)

    Article  ADS  Google Scholar 

  21. W. Yang, L. Queval, G. Ma, C. Ye, G. Li, T. Gong, IEEE Trans. Appl. Supercond. 30, 3602814 (2020)

    Google Scholar 

  22. C.G. Huang, C. Xue, H.D. Yong, Y.H. Zhou, J. Appl. Phys. 122, 083904 (2017)

    Article  ADS  Google Scholar 

  23. C.G. Huang, B. Xu, Y.H. Zhou, Supercond. Sci. Technol. 32, 045002 (2019)

    Article  ADS  Google Scholar 

  24. C.G. Huang, B. Xu, Y.H. Zhou, J. Appl. Phys. 127, 193907 (2020)

    Article  ADS  Google Scholar 

  25. F. Sass, D.H.N. Dias, G.G. Sotelo, R. de Andrade, Supercond. Sci. Technol. 31, 025006 (2018)

    Article  ADS  Google Scholar 

  26. Y. Yeshurun, A.P. Malozemoff, A. Shaulov, Rev. Mod. Phys. 68, 911 (1996)

    Article  ADS  Google Scholar 

  27. S. Braeck, D.V. Shantsev, T.H. Johansen, Y.M. Galperin, J. Appl. Phys. 92, 6235 (2002)

    Article  ADS  Google Scholar 

  28. A. Morandi, Supercond. Sci. Technol. 25, 104003 (2012)

    Article  ADS  Google Scholar 

  29. A. Morandi, M. Fabbri, Supercond. Sci. Technol. 28, 024004 (2015)

    Article  ADS  Google Scholar 

  30. J. Lévêque, A. Rezzoug, Int. J. Heat Mass Transfer 48, 2815 (2005)

    Article  Google Scholar 

  31. X. Fu, H.N. Li, T.H. Yi, J. Wind Eng. Ind. Aerodyn. 139, 27 (2015)

    Article  Google Scholar 

  32. M.J. Qin, G. Li, H.K. Liu, S.X. Dou, E.H. Brandt, Phys. Rev. B 66, 024516 (2002)

    Article  ADS  Google Scholar 

  33. M. Tsuda, T. Kojima, T. Yagai, T. Hamajima, IEEE Trans. Appl. Supercond. 17, 2059 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the supports from the National Natural Science Foundation of China (Grant No. 11602195), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2021JM-046) and the Fundamental Research Funds for the Central Universities (Grant No. 310201906zy007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenguang Huang.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Zhang, T. & Song, Z. Modeling of Vibration and Drift Behaviors Triggered by Environmental Factors in a Superconducting Maglev with Thermal-Electromagnetic Interaction. J Low Temp Phys 204, 129–142 (2021). https://doi.org/10.1007/s10909-021-02602-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02602-x

Keywords

Navigation