Abstract
In the present work, we will study the effect that the surface roughness of the sample has on the magnetic and thermodynamic properties in a mesoscopic superconducting meso-square under an external magnetic field in a zero-field cooling process. We will analyze the magnetization, superconducting electronic density, free Gibbs energy, specific heat and entropy as a function of the roughness of the sample in a superconducting two-band square taking a Josephson type inter-band coupling. We show that the magnetic and thermodynamic properties depend on the roughness percentage of its surface. Our investigation was carried out by numerically solving the two-band time-dependent Ginzburg–Landau equations.
This is a preview of subscription content, access via your institution.














References
V.V. Moshchalkov, L. Gielen, C. Strunk, R. Jonckheere, X. Qiu, C. Van Haesendonck, Y. Bruynseraede, Nature 373, 319 (1995). https://doi.org/10.1038/373319a0
P.G. de Gennes, Superconductivity in Metals and Alloys (Addison-Wesley, Reading, MA, 1989)
E. Sardella, M.M. Doria, P.R.S. Netto, Phys. Rev. B. 60, 13158 (1999). https://doi.org/10.1103/PhysRevB.60.13158
C.C. de Souza Silva, L.R.E. Cabral, J.A. Aguiar, Phys. Rev. B 63, 134526 (2001). https://doi.org/10.1103/PhysRevB.63.134526
V.R. Misko, V.M. Fomin, J.T. Devreese, V.V. Moshchalkov, Phys. Rev. Lett. (2003). https://doi.org/10.1103/PhysRevLett.90.147003
L.R.E. Cabral, B.J. Baelus, F.M. Peeters, Phys. Rev. B (2004). https://doi.org/10.1103/PhysRevB.70.144523
J. Barba-Ortega, E. Sardella, J.A. Aguiar, Phys. C 470, 1964 (2010). https://doi.org/10.1016/j.physc.2010.08.008
J. Barba-Ortega, E. Sardella, J.A. Aguiar, Supercond. Sci. Technol. (2011). https://doi.org/10.1088/0953-2048/24/1/015001
B.J. Baelus, K. Kadowaki, F.M. Peeters, Phys. Rev. B (2005). https://doi.org/10.1103/PhysRevB.71.024514
J. Barba-Ortega, E. Sardella, J.A. Aguiar, Phys. C 485, 107 (2012). https://doi.org/10.1016/j.physc.2012.11.004
G.J. Kimmel, A. Glatz, V.M. Vinokur, I.A. Sadovskyy, Sci. Rep. 9, 1 (2019). https://doi.org/10.1038/s41598-018-36285-4
P.S. Deo, J.P. Pekola, M. Manninen, Eur. Lett. 50(5), 649 (2000). https://doi.org/10.1209/epl/i2000-00319-x
F.R. Ong, O. Bourgeois, Eur. Lett. 79(6), 67003 (2007). https://doi.org/10.1209/0295-5075/79/67003
X. Ben, M.V. Milosevic, F.M. Peeters, Phys. Rev. B (2010). https://doi.org/10.1103/PhysRevB.81.064501
W.A. Little, R.D. Parks, Phys. Rev. Lett. 9, 9 (1962). https://doi.org/10.1103/PhysRevLett.9.9
R.D. Parks, W.A. Little, Phys. Rev. 133, A97 (1964). https://doi.org/10.1103/PhysRev.133.A97
F.R. Ong, O. Bourgeois, S.E. Skipetrov, J. Chaussy, Phys. Rev. B 74, 140503(R) (2006). https://doi.org/10.1103/PhysRevB.74.140503
C. Meyers, Phys. Rev. B (2003). https://doi.org/10.1103/PhysRevB.68.104522
J.J. Palacios, Stat. Dyn. Asp. Mesos. Syst. (2000). https://doi.org/10.1007/3-540-45557-4_21
P.H. Huang, C.M. Lu, Sci. World J. (2014). https://doi.org/10.1155/2014/863404
F. Bouquet, Y. Wang, I. Sheikin, T. Plackowski, A. Junod, S. Lee, S. Tajima, Phys. Rev. Lett. (2002). https://doi.org/10.1103/PhysRevLett.89.257001
A.M. Gabovich, A.I. Voitenko, Low Temp. Phys. 28, 803 (2002). https://doi.org/10.1088/0953-8984/14/6/320
A.M. Gabovich, A.I. Voitenko, M.S. Li, H. Szymczak, Low Temp. Phys. 28, 803 (2002). https://doi.org/10.1063/1.1528571
Y. Kleeorin, H. Thierschmann, A. Georges, L.W. Molenkamp, Y. Meir, Nat. Commun. 10(1), 1 (2019). https://doi.org/10.1038/s41467-019-13630-3
M.V. Milošević, R. Geurts, Phys. C 470, 791–795 (2010). https://doi.org/10.1016/j.physc.2010.02.056
C. Aguirre, E. Sardella, J. Barba-Ortega, Solid. State. Commun. (2020). https://doi.org/10.1016/j.ssc.2019.113799
T. Nunes, C. Aguirre, A. de Arruda, J. Barba, Eur. Phys. J. B 93, 69 (2020). https://doi.org/10.1140/epjb/e2020-100418-4
J. Garaud, J. Carlström, E. Babaev, Phys. Rev. Lett. (2011). https://doi.org/10.1103/PhysRevLett.107.197001
J. Garaud, J. Carlström, E. Babaev, M. Speight, Phys. Rev. B 87, 014507 (2013). https://doi.org/10.1140/epjb/e2020-100418-4
M. Zehetmayer, M. Eisterer, J. Jun, S.M. Kazakov, J. Karpinski, A. Wisniewski, H.W. Weber, Phys. Rev. B (2002). https://doi.org/10.1103/PhysRevB.66.052505
C.A. Aguirre, H.D. Blas, J. Barba-Ortega, J. Low. Temp. Phys. 195, 124 (2019). https://doi.org/10.1007/s10909-019-02147-0
C.A. Aguirre, H.D. Blas, J. Barba Ortega, Phys. C 554, 8 (2018). https://doi.org/10.1016/j.physc.2018.08.010
M.V. Milosević, F.M. Peeters, Phys. Rev. Lett. (2004). https://doi.org/10.1103/PhysRevLett.93.267006
C.D. Dewhurst, R. Cubitt, M.R. Eskildsen, S.M. Kazakov, J. Karpinski, J. Phys. C 404, 135 (2004). https://doi.org/10.1016/0921-4534(93)90777-N
A.C. Romaguera, S. Silva, J. Math. Phys (2013). https://doi.org/10.1063/1.4819247
D. Li, K. Lee, B.Y. Wang, M. Osada, S. Crossley, H.R. Lee, Y. Cui, Y. Hikita, H.Y. Hwang, Nature 572, 624 (2019). https://doi.org/10.1038/s41586-019-1496-5
S. Zeng, C.S. Tang, X. Yin, C. Li, M. Li, Z. Huang, J. Hu, W. Liu, G.J. Omar, H. Jani, Z.S. Lim, K. Han, D. Wan, P. Yang, S.J. Pennycook, A.T.S. Wee, A. Ariando, Phys. Rev. Lett. (2020). https://doi.org/10.1103/PhysRevLett.125.147003
H. Hosono, A. Yamamoto, H. Hiramatsu, Y. Ma, Mater. Today 21, 3 (2018). https://doi.org/10.1016/j.mattod.2017.09.006
C.H. Wang, T.K. Chen, C.C. Chang, Y.C. Lee, M.J. Wang, K.C. Huang, P.M. Wu, M.K. Wu, Phys. C 549, 61 (2018). https://doi.org/10.1016/j.physc.2018.02.047
Acknowledgements
C. A. Aguirre would like to thank the Brazilian agency CAPES, for financial support and the Ph.D. fellowship. J. Faúndez and S. G. Magalhães thank FAPERGS, CAPES and CNPq for partially financing this work under the Grant PRONEX 16/0490-0. A. Mosquera would like to thank the FONCIENCIAS 2018-Unimagdalena.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Aguirre, C.A., Faúndez, J., Magalhães, S.G. et al. Thermo-Magnetic Signature of a Superconducting Multi-band Square with Rough Surface. J Low Temp Phys 204, 95–110 (2021). https://doi.org/10.1007/s10909-021-02599-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10909-021-02599-3
Keywords
- Rough
- Superconductivity
- Two bands
- Calorimetrics