E.Y. Andrei, Two-Dimensional Electron Systems, Physics and Chemistry of Materials with Low-Dimensional Structures. Springer, Dordrecht (1997). https://doi.org/10.1007/978-94-015-1286-2
Article
Google Scholar
M.I. Dykman, P.M. Platzman, P. Seddighrad, Phys. Rev. B 67(15), 155402 (2003). https://doi.org/10.1103/PhysRevB.67.155402. https://link.aps.org/doi/10.1103/PhysRevB.67.155402
P.M. Platzman, Science 284(5422), 1967 (1999). https://doi.org/10.1126/science.284.5422.1967
Article
Google Scholar
E. Kawakami, A. Elarabi, D. Konstantinov, Phys. Rev. Lett. 123(8), 086801 (2019). https://doi.org/10.1103/PhysRevLett.123.086801
ADS
Article
Google Scholar
S.A. Lyon, Phys. Rev. A - At. Mol. Opt. Phys. 74(5), 1 (2006). https://doi.org/10.1103/PhysRevA.74.052338
Article
Google Scholar
D.I. Schuster, A. Fragner, M.I. Dykman, S.A. Lyon, R.J. Schoelkopf, Phys. Rev. Lett. 105(4), 040503 (2010). https://doi.org/10.1103/PhysRevLett.105.040503
ADS
Article
Google Scholar
R.C. Ashoori, H.L. Stormer, J.S. Weiner, L.N. Pfeiffer, S.J. Pearton, K.W. Baldwin, K.W. West, Phys. Rev. Lett. 68(20), 3088 (1992). https://doi.org/10.1103/PhysRevLett.68.3088. https://link.aps.org/doi/10.1103/PhysRevLett.60.1665 link.aps.org/doi/10.1103/PhysRevLett.68.3088
J. Stehlik, Y.Y. Liu, C.M. Quintana, C. Eichler, T.R. Hartke, J.R. Petta, Phys. Rev. Appl. 4(1), 014018 (2015). https://doi.org/10.1103/PhysRevApplied.4.014018
ADS
Article
Google Scholar
B. Abdo, K. Sliwa, S. Shankar, M. Hatridge, L. Frunzio, R. Schoelkopf, M. Devoret, Phys. Rev. Lett. 112(16), 167701 (2014). https://doi.org/10.1103/PhysRevLett.112.167701
ADS
Article
Google Scholar
R. Vijay, M.H. Devoret, I. Siddiqi, Rev. Sci. Instrum. 80(11), 111101 (2009). https://doi.org/10.1063/1.3224703
ADS
Article
Google Scholar
F.J. Schupp, F. Vigneau, Y. Wen, A. Mavalankar, J. Griffiths, G.A.C. Jones, I. Farrer, D.A. Ritchie, C.G. Smith, L.C. Camenzind, L. Yu, D.M. Zumbühl, G.A.D. Briggs, N. Ares, E.A. Laird, J. Appl. Phys. 127(24), 244503 (2020). https://doi.org/10.1063/5.0005886.
A. Phipps, A. Juillard, B. Sadoulet, B. Serfass, Y. Jin, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 940, 181 (2019). https://doi.org/10.1016/j.nima.2019.06.022.
A. Korolev, V. Shulga, S. Tarapov, Cryogenics (Guildf). 60, 76 (2014). https://doi.org/10.1016/j.cryogenics.2014.01.012.
E. Grémion, A. Cavanna, Y.X. Liang, U. Gennser, M.C. Cheng, M. Fesquet, G. Chardin, A. Benoît, Y. Jin, J. Low Temp. Phys. 151(3–4), 971 (2008). https://doi.org/10.1007/s10909-008-9780-z.
A.M. Korolev, V.I. Shnyrkov, V.M. Shulga, Rev. Sci. Instrum. 82(1), 016101 (2011). https://doi.org/10.1063/1.3518974. http://aip.scitation.org/doi/10.1063/1.3518974
G. Zimmerli, R.L. Kautz, J.M. Martinis, Applied Physics Letters 61(21), 2616 (1992). https://doi.org/10.1063/1.108117.
M.H. Devoret, R.J. Schoelkopf, Nature 406(6799), 1039 (2000). https://doi.org/10.1038/35023253
Article
Google Scholar
K. Segall, K.W. Lehnert, T.R. Stevenson, R.J. Schoelkopf, P. Wahlgren, A. Aassime, P. Delsing, Appl. Phys. Lett. 81(25), 4859 (2002). https://doi.org/10.1063/1.1530751
ADS
Article
Google Scholar
Y. Satoh, H. Okada, K. ichiroh Jinushi, H. Fujikura, H. Hasegawa, Japanese Journal of Applied Physics 38(Part 1, No. 1B), 410 (1999). https://doi.org/10.1143/jjap.38.410
L.A. Tracy, J.L. Reno, T. Hargett, S. Fallahi, M. Manfra, MilliKelvin HEMT Amplifiers for Low Noise High Bandwidth Measurement of Quantum Devices. Tech. Rep. October, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States) (2018). https://doi.org/10.2172/1471452.
M.J. Curry, T.D. England, N.C. Bishop, G. Ten-Eyck, J.R. Wendt, T. Pluym, M.P. Lilly, S.M. Carr, M.S. Carroll, Appl. Phys. Lett. 106(20), 203505 (2015). https://doi.org/10.1063/1.4921308.
C. Wan, Z. Jiang, L. Kang, P. Wu, IEEE Trans. Appl. Supercond. 27(4), 1 (2017). https://doi.org/10.1109/TASC.2017.2677519.
M.J. Curry, M. Rudolph, T.D. England, A.M. Mounce, R.M. Jock, C. Bureau-Oxton, P. Harvey-Collard, P.A. Sharma, J.M. Anderson, D.M. Campbell, J.R. Wendt, D.R. Ward, S.M. Carr, M.P. Lilly, M.S. Carroll, Sci. Rep. 9(1), 16976 (2019). https://doi.org/10.1038/s41598-019-52868-1.
V.V. Zavjalov, A.M. Savin, P.J. Hakonen, J. Low Temp. Phys. 195(1–2), 72 (2019). https://doi.org/10.1007/s10909-018-02130-1.
B.I. Ivanov, M. Grajcar, I.L. Novikov, A.G. Vostretsov, E. Il’ichev, Tech. Phys. Lett. 42(4), 380 (2016). https://doi.org/10.1134/S1063785016040076
ADS
Article
Google Scholar
B.I. Ivanov, M. Trgala, M. Grajcar, E. Il’ichev, H.G. Meyer, Rev. Sci. Instrum. 82(10), 104705 (2011). https://doi.org/10.1063/1.3655448.
S. Weinreb, J.C. Bardin, H. Mani, IEEE Trans. Microw. Theory Tech. 55(11), 2306 (2007). https://doi.org/10.1109/TMTT.2007.907729.
M. Goryachev, S. Galliou, P. Abbé, Cryogenics (Guildf). 50(6–7), 381 (2010). https://doi.org/10.1016/j.cryogenics.2010.02.002.
N. Oukhanski, M. Grajcar, E. Il’ichev, H.G. Meyer, Rev. Sci. Instrum. 74(2), 1145 (2003). https://doi.org/10.1063/1.1532539.
I. Angelov, N. Wadefalk, J. Stenarson, E. Kollberg, P. Starski, H. Zirath, in 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017), vol. 2 (IEEE, 2000), vol. 2. https://doi.org/10.1109/mwsym.2000.863583.
Infineon Technologies AG, Low Noise SiGe Bipolar RF Transistor Datasheet (2012). https://www.infineon.com/cms/en/product/rf-wireless-control/rf-transistor/ultra-low-noise-sigec-transistors-for-use-up-to-12-ghz/bfp640esd/
R. Jaeger, Microelectronic circuit design (McGraw-Hill, New York, 2011)
Google Scholar
B.H. Hu, C.H. Yang, Rev. Sci. Instrum. 76(12), 124702 (2005). https://doi.org/10.1063/1.2140224.
Cosmic Microwave Technology, Cryogenic SiGe Low Noise Amplifier Datasheet (2009). https://www.cosmicmicrowavetechnology.com/citlf1
Y.P. Monarkha, S.S. Sokolov, Journal of Low Temperature Physics 148(3–4), 157 (2007). https://doi.org/10.1007/s10909-007-9370-5.
T.Y. Lin, R.J. Green, P.B. O’Connor, Rev. Sci. Instrum. 83(9), 094102 (2012). https://doi.org/10.1063/1.4751851. http://aip.scitation.org/doi/10.1063/1.4751851