Skip to main content

Cryogenic amplification of image-charge detection for readout of quantum states of electrons on liquid helium

Abstract

Accurate detection of quantum states is a vital step in the development of quantum computing. Image-charge detection of quantum states of electrons on liquid helium can potentially be used for the readout of a single-electron qubit; however, low sensitivity due to added noise hinders its usage in high-fidelity and high-bandwidth (BW) applications. One method to improve the readout accuracy and bandwidth is to use cryogenic amplifications near the signal source to minimize the effects of stray capacitance. We experimentally demonstrate a two-stage amplification scheme with a low power dissipation of \({90}\,\upmu \hbox {W}\) at the first stage located at the still plate of the dilution refrigerator and a high gain of \({40}\,\hbox {dB}\) at the second stage located at the 4 K plate. The good impedance matching between different stages and output devices ensures high BW and constant gain in a wide frequency range. The detected image-charge signals are compared for one-stage and two-stage amplification schemes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. E.Y. Andrei, Two-Dimensional Electron Systems, Physics and Chemistry of Materials with Low-Dimensional Structures. Springer, Dordrecht (1997). https://doi.org/10.1007/978-94-015-1286-2

    Article  Google Scholar 

  2. M.I. Dykman, P.M. Platzman, P. Seddighrad, Phys. Rev. B 67(15), 155402 (2003). https://doi.org/10.1103/PhysRevB.67.155402. https://link.aps.org/doi/10.1103/PhysRevB.67.155402

  3. P.M. Platzman, Science 284(5422), 1967 (1999). https://doi.org/10.1126/science.284.5422.1967

    Article  Google Scholar 

  4. E. Kawakami, A. Elarabi, D. Konstantinov, Phys. Rev. Lett. 123(8), 086801 (2019). https://doi.org/10.1103/PhysRevLett.123.086801

    ADS  Article  Google Scholar 

  5. S.A. Lyon, Phys. Rev. A - At. Mol. Opt. Phys. 74(5), 1 (2006). https://doi.org/10.1103/PhysRevA.74.052338

    Article  Google Scholar 

  6. D.I. Schuster, A. Fragner, M.I. Dykman, S.A. Lyon, R.J. Schoelkopf, Phys. Rev. Lett. 105(4), 040503 (2010). https://doi.org/10.1103/PhysRevLett.105.040503

    ADS  Article  Google Scholar 

  7. R.C. Ashoori, H.L. Stormer, J.S. Weiner, L.N. Pfeiffer, S.J. Pearton, K.W. Baldwin, K.W. West, Phys. Rev. Lett. 68(20), 3088 (1992). https://doi.org/10.1103/PhysRevLett.68.3088. https://link.aps.org/doi/10.1103/PhysRevLett.60.1665 link.aps.org/doi/10.1103/PhysRevLett.68.3088

  8. J. Stehlik, Y.Y. Liu, C.M. Quintana, C. Eichler, T.R. Hartke, J.R. Petta, Phys. Rev. Appl. 4(1), 014018 (2015). https://doi.org/10.1103/PhysRevApplied.4.014018

    ADS  Article  Google Scholar 

  9. B. Abdo, K. Sliwa, S. Shankar, M. Hatridge, L. Frunzio, R. Schoelkopf, M. Devoret, Phys. Rev. Lett. 112(16), 167701 (2014). https://doi.org/10.1103/PhysRevLett.112.167701

    ADS  Article  Google Scholar 

  10. R. Vijay, M.H. Devoret, I. Siddiqi, Rev. Sci. Instrum. 80(11), 111101 (2009). https://doi.org/10.1063/1.3224703

    ADS  Article  Google Scholar 

  11. F.J. Schupp, F. Vigneau, Y. Wen, A. Mavalankar, J. Griffiths, G.A.C. Jones, I. Farrer, D.A. Ritchie, C.G. Smith, L.C. Camenzind, L. Yu, D.M. Zumbühl, G.A.D. Briggs, N. Ares, E.A. Laird, J. Appl. Phys. 127(24), 244503 (2020). https://doi.org/10.1063/5.0005886.

  12. A. Phipps, A. Juillard, B. Sadoulet, B. Serfass, Y. Jin, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 940, 181 (2019). https://doi.org/10.1016/j.nima.2019.06.022.

  13. A. Korolev, V. Shulga, S. Tarapov, Cryogenics (Guildf). 60, 76 (2014). https://doi.org/10.1016/j.cryogenics.2014.01.012.

  14. E. Grémion, A. Cavanna, Y.X. Liang, U. Gennser, M.C. Cheng, M. Fesquet, G. Chardin, A. Benoît, Y. Jin, J. Low Temp. Phys. 151(3–4), 971 (2008). https://doi.org/10.1007/s10909-008-9780-z.

  15. A.M. Korolev, V.I. Shnyrkov, V.M. Shulga, Rev. Sci. Instrum. 82(1), 016101 (2011). https://doi.org/10.1063/1.3518974. http://aip.scitation.org/doi/10.1063/1.3518974

  16. G. Zimmerli, R.L. Kautz, J.M. Martinis, Applied Physics Letters 61(21), 2616 (1992). https://doi.org/10.1063/1.108117.

  17. M.H. Devoret, R.J. Schoelkopf, Nature 406(6799), 1039 (2000). https://doi.org/10.1038/35023253

    Article  Google Scholar 

  18. K. Segall, K.W. Lehnert, T.R. Stevenson, R.J. Schoelkopf, P. Wahlgren, A. Aassime, P. Delsing, Appl. Phys. Lett. 81(25), 4859 (2002). https://doi.org/10.1063/1.1530751

    ADS  Article  Google Scholar 

  19. Y. Satoh, H. Okada, K. ichiroh Jinushi, H. Fujikura, H. Hasegawa, Japanese Journal of Applied Physics 38(Part 1, No. 1B), 410 (1999). https://doi.org/10.1143/jjap.38.410

  20. L.A. Tracy, J.L. Reno, T. Hargett, S. Fallahi, M. Manfra, MilliKelvin HEMT Amplifiers for Low Noise High Bandwidth Measurement of Quantum Devices. Tech. Rep. October, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States) (2018). https://doi.org/10.2172/1471452.

  21. M.J. Curry, T.D. England, N.C. Bishop, G. Ten-Eyck, J.R. Wendt, T. Pluym, M.P. Lilly, S.M. Carr, M.S. Carroll, Appl. Phys. Lett. 106(20), 203505 (2015). https://doi.org/10.1063/1.4921308.

  22. C. Wan, Z. Jiang, L. Kang, P. Wu, IEEE Trans. Appl. Supercond. 27(4), 1 (2017). https://doi.org/10.1109/TASC.2017.2677519.

  23. M.J. Curry, M. Rudolph, T.D. England, A.M. Mounce, R.M. Jock, C. Bureau-Oxton, P. Harvey-Collard, P.A. Sharma, J.M. Anderson, D.M. Campbell, J.R. Wendt, D.R. Ward, S.M. Carr, M.P. Lilly, M.S. Carroll, Sci. Rep. 9(1), 16976 (2019). https://doi.org/10.1038/s41598-019-52868-1.

  24. V.V. Zavjalov, A.M. Savin, P.J. Hakonen, J. Low Temp. Phys. 195(1–2), 72 (2019). https://doi.org/10.1007/s10909-018-02130-1.

  25. B.I. Ivanov, M. Grajcar, I.L. Novikov, A.G. Vostretsov, E. Il’ichev, Tech. Phys. Lett. 42(4), 380 (2016). https://doi.org/10.1134/S1063785016040076

    ADS  Article  Google Scholar 

  26. B.I. Ivanov, M. Trgala, M. Grajcar, E. Il’ichev, H.G. Meyer, Rev. Sci. Instrum. 82(10), 104705 (2011). https://doi.org/10.1063/1.3655448.

  27. S. Weinreb, J.C. Bardin, H. Mani, IEEE Trans. Microw. Theory Tech. 55(11), 2306 (2007). https://doi.org/10.1109/TMTT.2007.907729.

  28. M. Goryachev, S. Galliou, P. Abbé, Cryogenics (Guildf). 50(6–7), 381 (2010). https://doi.org/10.1016/j.cryogenics.2010.02.002.

  29. N. Oukhanski, M. Grajcar, E. Il’ichev, H.G. Meyer, Rev. Sci. Instrum. 74(2), 1145 (2003). https://doi.org/10.1063/1.1532539.

  30. I. Angelov, N. Wadefalk, J. Stenarson, E. Kollberg, P. Starski, H. Zirath, in 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017), vol. 2 (IEEE, 2000), vol. 2. https://doi.org/10.1109/mwsym.2000.863583.

  31. Infineon Technologies AG, Low Noise SiGe Bipolar RF Transistor Datasheet (2012). https://www.infineon.com/cms/en/product/rf-wireless-control/rf-transistor/ultra-low-noise-sigec-transistors-for-use-up-to-12-ghz/bfp640esd/

  32. R. Jaeger, Microelectronic circuit design (McGraw-Hill, New York, 2011)

    Google Scholar 

  33. B.H. Hu, C.H. Yang, Rev. Sci. Instrum. 76(12), 124702 (2005). https://doi.org/10.1063/1.2140224.

  34. Cosmic Microwave Technology, Cryogenic SiGe Low Noise Amplifier Datasheet (2009). https://www.cosmicmicrowavetechnology.com/citlf1

  35. Y.P. Monarkha, S.S. Sokolov, Journal of Low Temperature Physics 148(3–4), 157 (2007). https://doi.org/10.1007/s10909-007-9370-5.

  36. T.Y. Lin, R.J. Green, P.B. O’Connor, Rev. Sci. Instrum. 83(9), 094102 (2012). https://doi.org/10.1063/1.4751851. http://aip.scitation.org/doi/10.1063/1.4751851

Download references

Acknowledgements

We acknowledge funding provided by an internal grant from Okinawa Institute of Science Technology (OIST) Graduate University, as well as JST-PRESTO (Grant No. JPMJPR1762) and JSPS KAKENHI (Grant No. 20K15118). We are grateful to V. P. Dvornichenko and A. S. Rybalko for providing technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Asem Elarabi or Denis Konstantinov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elarabi, A., Kawakami, E. & Konstantinov, D. Cryogenic amplification of image-charge detection for readout of quantum states of electrons on liquid helium. J Low Temp Phys 202, 456–465 (2021). https://doi.org/10.1007/s10909-020-02552-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02552-w

Keywords

  • Cryogenic amplifier
  • Electrons on helium
  • Qubits readout
  • Heterojunction bipolar transistor
  • Low-temperature electronics