Skip to main content
Log in

Thermal Properties and Magnetic Susceptibility of Hellmann Potential in Aharonov–Bohm (AB) Flux and Magnetic Fields at Zero and Finite Temperatures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this research work, the Hellmann potential is studied in the presence of external magnetic and AB flux fields within the framework of Schrodinger equation using the Nikiforov–Uvarov functional analysis method. The energy equation and wave function of the system are obtained in closed form. The effect of the fields on the energy spectra of the system is examined in detail. It is found that the AB field performs better than the magnetic field in its ability to remove degeneracy. Furthermore, the magnetization and magnetic susceptibility of the system were discussed at zero and finite temperatures. We evaluate the partition function and use it to evaluate other thermodynamic properties of the system such as magnetic susceptibility, \( \chi_{\text{m}} \left( {\vec{B},\varPhi_{\text{AB}} ,\beta } \right) \), Helmholtz free energy \( F\left( {\vec{B},\varPhi_{\text{AB}} ,\beta } \right) \), entropy \( S\left( {\vec{B},\varPhi_{\text{AB}} ,\beta } \right) \), internal energy \( U\left( {\vec{B},\varPhi_{\text{AB}} ,\beta } \right) \) and specific heat \( C_{v} \left( {\vec{B},\varPhi_{\text{AB}} ,\beta } \right) \). A comparative analysis of the magnetic susceptibility of the system at zero and finite temperatures shows a similarity in the behavior of the system. A straightforward extension of our results to three dimensions shows that the present result is consistent with what is obtained in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Hellmann, J. Chem. Phys. 3, 61 (1935)

    ADS  Google Scholar 

  2. H. Hellmann, W. Kassatotschkin, J. Chem. Phys 4, 324 (1936)

    ADS  Google Scholar 

  3. G. Simons, J. Chem. Phys. 55, 756 (1971)

    ADS  Google Scholar 

  4. H. Hellmann, Acta Physicochim. U.R.S.S. 1, 913 (1934/1935)

  5. C.A. Onate, M.C. Onyeaju, A.N. Ikot, O. Ebomwonyi, Eur. Phys. J. Plus 132, 462 (2017)

    Google Scholar 

  6. M. Hamzavi, K.E. Thylwe, A.A. Rajabi, Commun. Theor. Phys. 60, 1 (2013)

    ADS  Google Scholar 

  7. O.J. Oluwadare, K.J. Oyewumi, Adv. High Energy Phys. 2018, 5214041 (2018)

    Google Scholar 

  8. B.H. Yazarloo, H. Mehraban, H. Hassnabadi, Acta Phys. Pol. A 127, 684 (2015)

    ADS  Google Scholar 

  9. O.J. Oluwadare, K.J. Oyewumi, Chin. J. Phys 55, 2422 (2017)

    Google Scholar 

  10. J. Callaway, P.S. Laghos, Phys. Rev. 187, 192 (1969)

    ADS  Google Scholar 

  11. G. McGinn, J. Chem. Phys. 53, 3635 (1970)

    ADS  Google Scholar 

  12. V.K. Gryaznov, M.V. Zhernokletov, V.N. Zubarev, I.L. Losilevskii, V.E. Tortov, Eh Eksp, Teor. Fiz. 78, 573 (1980)

    Google Scholar 

  13. J.G. Philips, L. Kleinmann, Phys. Rev. A 116, 287 (1959)

    ADS  Google Scholar 

  14. A.J. Hughes, J. Callaway, Phys. Rev. A 136, 1390 (1964)

    ADS  Google Scholar 

  15. J. Zakrzewski, R. Gebarowski, D. Delande, Phys. Rev. A 54, 691 (1996)

    ADS  Google Scholar 

  16. M. Eshghi, H. Mehraban, S.M. Ikhdair, Chin. Phys. B 26, 060302 (2017)

    ADS  Google Scholar 

  17. M. Eshghi, R. Sever, S.M. Ikhdair, Chin. Phys. B 27, 020301 (2018)

    ADS  Google Scholar 

  18. M. Eshghi, H. Mehraban, Eur. Phys. J. Plus 132, 121 (2017)

    Google Scholar 

  19. R. Khordad, Solid State Sci. 12, 1253 (2010)

    ADS  Google Scholar 

  20. S.M. Ikhdair, B.J. Falaye, J. Ass, Arab. Univ. Basic Appl. Sci. 16, 1 (2014)

    Google Scholar 

  21. S.M. Ikhdair, B.J. Falaye, M. Hamzavi, Ann. Phys. 353, 282 (2015)

    ADS  Google Scholar 

  22. B.J. Falaye, G.H. Sun, R.S. Ortigoz, S.H. Dong, Phys. Rev. E 93, 053201 (2016)

    ADS  Google Scholar 

  23. M. Aygun, O. Bayrak, I. Boztosun, Y. Sahin, Eur. Phys. J. D 66, 35 (2012)

    ADS  Google Scholar 

  24. K.J. Oyewumi, E.O. Titiloye, A.B. Alabi, B.J. Falaye, J. Niger. Math. Soc. 35, 460 (2016)

    Google Scholar 

  25. N. Ferkous, A. Bounames, Commun. Theor. Phys. 59, 679 (2013)

    ADS  Google Scholar 

  26. A. Çetin, Phys. B 523, 92 (2017)

    ADS  Google Scholar 

  27. F.A.S. Orozco, J.G.A. Ochoa, X.C. Rivas, J.L.C. Figueroa, H.M.M. Carrada, Heliyon 5, e02224 (2019)

    Google Scholar 

  28. W. Ebeling, M.I. Sokolov, Statistical Thermodynamics and Stochastic Theory of Nonequilibrium Systems (World Scientific, Singapore, 2005), p. 312

    MATH  Google Scholar 

  29. R.K. Pathria, Statistical Mechanics (Butterworth, Washington, 1996)

    MATH  Google Scholar 

  30. P.T. Landsberg, Thermodynamics and Statistical Mechanics (Dover, New York, 1991)

    Google Scholar 

  31. G. Sukirti, K. Manoj, J.P. Kumar, M. Man, Chin. Phys. B 25, 056502 (2016)

    ADS  Google Scholar 

  32. G.B. Ibragimov, Fizika 34, 35 (2003)

    Google Scholar 

  33. R. Khordad, H.R. Rastegar Sedehi, J. Low Temp. Phys. 190, 200 (2018)

    ADS  Google Scholar 

  34. R. Khordad, H.R. Rastegar Sedehi, Eur. Phys. J. Plus 134, 133 (2019)

    Google Scholar 

  35. A.A. Alia, M.K. Elsaid, A. Shaer, J. Taibah Univ. Sci. 13, 687 (2019)

    Google Scholar 

  36. D.A. Baghdasaryan, D.B. Hayrapetyan, E.M. Kazaryan, H.A. Sarkisyan, Physica E Low Dimens. Syst. Nanostruct. 101, 1 (2018)

    ADS  Google Scholar 

  37. R. Khordad, M.A. Sadeghzadeh, A. MohamadianJahan-abad, Commun. Theor. Phys. 59, 655 (2013)

    ADS  Google Scholar 

  38. R.L. Greene, C. Aldrich, Phys. Rev. A 14, 2363 (1976)

    ADS  Google Scholar 

  39. A.N. Ikot, G.J. Rampho, P.O. Amadi, M.J. Sithole, U.S. Okorie, M.I. Lekala, Eur. Phys. J. Plus 135, 503 (2020)

    Google Scholar 

  40. C.A. Onate, J.O. Ojonubah, A. Adeoti, E.J. Eweh, M. Ugboja, Afr. Rev. Phys. 9, 0062 (2014)

    Google Scholar 

  41. O. Ebomwonyi, C.A. Onate, M.C. Onyeaju, A.N. Ikot, Karbala Int. J. Mod. 3, 59 (2017)

    Google Scholar 

  42. G. Kocak, O. Bayrak, I. Boztosun, J. Theor. Comput. Chem. 6, 893 (2007)

    Google Scholar 

  43. B. Boyacioglu, A. Chatterjee, Physica E 44, 1826 (2012)

    ADS  Google Scholar 

  44. C.O. Edet, U.S. Okorie, G. Osobonye, A.N. Ikot, G.J. Rampho, R. Sever, J. Math. Chem. 58, 989 (2020)

    MathSciNet  Google Scholar 

  45. A.N. Ikot, U.S. Okorie, G. Osobonye, P.O. Amadi, C.O. Edet, M.J. Sithole, G.J. Rampho, R. Sever, Heliyon 6, e03738 (2020)

    Google Scholar 

  46. U.S. Okorie, C.O. Edet, A.N. Ikot, G.J. Rampho, R. Sever, Indian. J Phys. (2020). https://doi.org/10.1007/s12648-019-01670-w

    Article  Google Scholar 

  47. Z. Ocak, H. Yanar, M. Saltı, O. Aydoğdu, Chem. Phys. 513, 252 (2018)

    Google Scholar 

  48. A. Bera, A. Ghosh, M. Ghosh, J. Magn. Magn. Mater. 484, 391 (2019)

    ADS  Google Scholar 

  49. A.N. Ikot, C.O. Edet, P.O. Amadi, U.S. Okorie, G.J. Rampho, H.Y. Abdullah, Eur. Phys. J. D 74, 159 (2020)

    ADS  Google Scholar 

  50. J. Wang, C.S. Jia, C.J. Li, X.L. Peng, L.H. Zhang, J.Y. Liu, ACS Omega 4, 19193 (2019)

    Google Scholar 

  51. M. Servatkhah, R. Khordad, Int. J. Thermophys. 41, 37 (2020)

    ADS  Google Scholar 

  52. R. Khordad, A. Ghanbari, J. Low Temp. Phys. 199, 1198 (2020)

    ADS  Google Scholar 

  53. C.S. Jia, C.W. Wang, L.H. Zhang, X.L. Peng, R. Zeng, X.T. You, Chem. Phys. Lett. 676, 150 (2017)

    ADS  Google Scholar 

  54. C.S. Jia, J. Li, Y.S. Liu, X.L. Peng, X. Jia, L.H. Zhang, R. Jiang, X.P. Li, J.Y. Liu, Y.L. Zhao, J. Mol. Liq. 315, 113751 (2020)

    Google Scholar 

  55. C.S. Jia, C.W. Wang, L.H. Zhang, X.L. Peng, H.M. Tang, R. Zeng, Chem. EngV Sci. 183, 26 (2018)

    Google Scholar 

  56. C.S. Jia, R. Zeng, X.L. Peng, L.H. Zhang, Y.L. Zhao, Chem. Eng. Sci. 190, 1 (2018)

    Google Scholar 

  57. C.S. Jia, C.W. Wang, L.H. Zhang, X.L. Peng, H.M. Tang, J.Y. Liu, Y. Xiong, R. Zeng, Chem. Phys. Lett. 692, 57 (2018)

    ADS  Google Scholar 

  58. C.S. Jia, L.H. Zhang, X.L. Peng, J.X. Luo, Y.L. Zhao, J.Y. Liu, J.J. Guo, L.D. Tang, Chem. Eng. Sci. 202, 70 (2019)

    Google Scholar 

  59. R. Jiang, C.S. Jia, Y.Q. Wang, X.L. Peng, L.H. Zhang, Chem. Phys. Lett. 715, 186 (2019)

    ADS  Google Scholar 

  60. X.L. Peng, R. Jiang, C.S. Jia, L.H. Zhang, Y.L. Zhao, Chem. Eng. Sci. 190, 122 (2018)

    Google Scholar 

  61. P.O. Amadi, A.N. Ikot, A.T. Ngiangia, U.S. Okorie, G.J. Rampho, H.Y. Abdullah. Int. J. Quant. Chem. e26246 (2020). https://doi.org/10.1002/qua.26246

  62. E.E. Ibekwe, A.T. Ngiangia, U.S. Okorie, A.N. Ikot, H.Y. Abdullah, Iran J. Sci. Technol. Trans. Sci. https://doi.org/10.1007/s40995-020-00913-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Ikot.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edet, C.O., Amadi, P.O., Onyeaju, M.C. et al. Thermal Properties and Magnetic Susceptibility of Hellmann Potential in Aharonov–Bohm (AB) Flux and Magnetic Fields at Zero and Finite Temperatures. J Low Temp Phys 202, 83–105 (2021). https://doi.org/10.1007/s10909-020-02533-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02533-z

Keywords

Navigation