Skip to main content
Log in

Investigations on Thermomagnetic Properties of YbFe2As2

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A phenomenological model (PM) is applied to simulate magnetocaloric effect (MCE) of YbFe2As2 (YFA) sample. Based on PM, MCE parameters are deduced as the results of simulation for magnetization versus temperature under 5 T magnetic field. The maximum value of magnetic entropy change is 2.55 J/kg K. The values of full-width at half-maximum relative cooling power and refrigerant capacity are 34 K, 87 J/kg, and 62.6 J/kg, respectively. It is recommended that YFA can be used as an effective material of magnetic refrigerator over a temperature range, covering a significant range of temperature between 0 and 50 K. This indicates that YFA is considered as the MCE material functioning at a liquid helium temperature zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. F. Issaoui, E. Dhahri, E.K. Hlil, J. Low Temp. Phys. 200, 1 (2020)

    ADS  Google Scholar 

  2. N.R. Ram, M. Prakash, U. Naresh, N.S. Kumar, T.S. Sarmash, T. Subbarao, K.C.B. Naidu, J. Supercond. Nov. Magn. 31, 1971–1979 (2018)

    Google Scholar 

  3. S.J. Kim, J. Kim, E.S. Park, JOM 70, 988 (2018)

    Google Scholar 

  4. N. Mahfoudh, M. Koubaa, W.C. Koubaa, A. Cheikhrouhou, J. Electroceram. 32, 224 (2014)

    Google Scholar 

  5. T. Gottschall, E. Stern-Taulats, L. Mañosa, A. Planes, K.P. Skokov, O. Gutfleisch, Appl. Phys. Lett. 110, 223904 (2017)

    ADS  Google Scholar 

  6. A. Belkahla, K. Cherif, H. Belmabrouk, A. Bajahzar, J. Dhahri, E.K. Hlil, Appl. Phys. A 125, 443 (2019)

    ADS  Google Scholar 

  7. R. Kumar, Mater. Today Proc. 4, 5544 (2017)

    Google Scholar 

  8. E. Zarai, F. Issaoui, A. Tozri, M. Husseinc, E. Dhahri, J. Supercond. Nov. Magn. 29, 869 (2016)

    Google Scholar 

  9. M.A. Hamad, Process. Appl. Ceram. 9, 11 (2015)

    Google Scholar 

  10. M.H. Phan, S.C. Yu, J. Magn. Magn. Mater. 308, 325 (2007)

    ADS  Google Scholar 

  11. M. Bourouina, A. Krichene, N.C. Boudjada, M. Khitouni, W. Boujelben, Ceram. Int. 43, 8139 (2017)

    Google Scholar 

  12. Y. Xu, U. Memmert, U. Hartmann, J. Magn. Magn. Mater. 242–245, 698 (2002)

    ADS  Google Scholar 

  13. A. Dhahri, M. Jemmali, E. Dhahri, M.A. Valente, J. Alloy. Compd. 638, 221 (2015)

    Google Scholar 

  14. A. Dhahri, E. Dhahri, E.K. Hlil, Appl. Phys. A 116, 2077 (2014)

    ADS  Google Scholar 

  15. S. El Kossi, J. Dhahri, E.K. Hlil, RSC Adv. 6, 63497 (2016)

    ADS  Google Scholar 

  16. A.H. El-Sayed, M.A. Hamad, Phase Trans. 92, 517 (2019)

    Google Scholar 

  17. A.H. El-Sayed, M.A. Hamad, J. Supercond. Nov. Magn. 32, 1447 (2019)

    Google Scholar 

  18. S. Hcini, M. Boudard, A. Dhahri, S. Zemni, M.L. Bouazizi, Mater. Res. Express. 6, 066108 (2019)

    ADS  Google Scholar 

  19. J. Paglione, R.L. Greene, Nat. Phys. 6, 645 (2010)

    Google Scholar 

  20. D. Kasinathan, A. Ormeci, K. Koch, U. Burkhardt, W. Schnelle, A. Leithe-Jasper, H. Rosner, New J. Phys. 11, 025023 (2009)

    ADS  Google Scholar 

  21. Y. Liu, T.A. Lograsso, Phys. Rev. B 90, 224508 (2014)

    ADS  Google Scholar 

  22. N.S. Sangeetha, V. Smetana, A.V. Mudring, D.C. Johnston, Phys. Rev. B 100, 094438 (2019)

    ADS  Google Scholar 

  23. F. Hardy, A.E. Böhmer, D. Aoki, P. Burger, T. Wolf, P. Schweiss, R. Heid, P. Adelmann, Y.X. Yao, G. Kotliar, J. Schmalian, C. Meingast, Phys. Rev. Lett. 111, 027002 (2013)

    ADS  Google Scholar 

  24. S.S. Raj, P.I. Rajan, N. Ghosh, S. Mahalakshmi, M.K. Chattopadhyay, R. Navamathavan, J. Magn. Magn. Mater. 493, 165736 (2020)

    Google Scholar 

  25. M.A. Hamad, J. Supercond. Nov. Magn. 28, 3111–3115 (2015)

    Google Scholar 

  26. M.A. Hamad, Process. Appl. Ceram. 10, 33 (2016)

    Google Scholar 

  27. C. Wang, Cryogenics 41, 491 (2001)

    ADS  Google Scholar 

  28. M.A. Hamad, J. Supercond. Nov. Magn. 27, 269–272 (2014)

    Google Scholar 

  29. M.A. Hamad, J. Adv. Dielect. 3, 1350029 (2013)

    Google Scholar 

  30. M.A. Hamad, J. Adv. Dielect. 4, 1450026 (2014)

    ADS  Google Scholar 

  31. M.A. Hamad, Phase Transit. 85, 106 (2012)

    Google Scholar 

  32. M.A. Hamad, J. Comput. Electron. 11, 344 (2012)

    Google Scholar 

  33. M.A. Hamad, Theoretical investigations on electrocaloric properties of PbZr0.95Ti0.05O3 thin film. Int. J. Thermophys. 34, 1158–1165 (2013)

    ADS  Google Scholar 

  34. M.A. Hamad, Process. Appl. Ceram. 11, 225–229 (2017)

    Google Scholar 

  35. M.A. Hamad, J. Supercond. Nov. Magn. 27, 223 (2014)

    Google Scholar 

  36. M.A. Hamad, J. Adv. Ceram. 2, 308–312 (2013)

    Google Scholar 

  37. M.A. Hamad, J. Supercond. Nov. Magn. 29, 1539 (2016)

    Google Scholar 

  38. M.A. Hamad, Investigations on electrocaloric properties of [111] oriented 0.955PbZn 1/3Nb2/3O3–0.045PbTiO3 single crystals. Phase Trans. 86, 307–314 (2013)

    Google Scholar 

  39. A.H. El-Sayed, O.M. Hemeda, M.A. Hamad, A.M. Mohamed, The enhancement of thermomagnetic properties for BaFe12O19 by trivalent ion substitutions. J. Supercond. Nov. Magn. 33, 769–773 (2020)

    Google Scholar 

  40. M.A. Hamad, J. Supercond. Nov. Magn. 28, 3365 (2015)

    Google Scholar 

  41. M.A. Hamad, O.M. Hemeda, H.M. Alamri, A.M. Mohamed, Magnetocaloric effect for NaFeO2 nanoparticles. J. Supercond. Nov. Magn. (2020). https://doi.org/10.1007/s10948-020-05643-7

    Article  Google Scholar 

  42. M.A. Hamad, J. Supercond. Nov. Magn. 27, 2569 (2014)

    Google Scholar 

  43. M.A. Hamad, J. Supercond. Nov. Magn. 31, 337 (2018)

    Google Scholar 

  44. M.A. Hamad, Magnetocaloric effect in Fe3.5Co66.5Si12-xGexB18 ribbons. J. Supercond. Nov. Magn. 29, 2867–2871 (2016)

    Google Scholar 

  45. M.A. Hamad, O.M. Hemeda, A.M. Mohamed, J. Supercond. Nov. Magn. 33, 2753–2757 (2020)

    Google Scholar 

  46. A.H. El-Sayed, M.A. Hamad, Magnetocaloric effect in La1-xLixMnO3. J. Supercond. Nov. Magn. 31, 4167–4171 (2018)

    Google Scholar 

  47. M.A. Hamad, Calculations of the low field magnetocaloric effect in Fe4MnSi3Bx. J. Supercond. Nov. Magn. 28, 2223 (2015)

    Google Scholar 

  48. M.A. Hamad, O.M. Hemeda, A.M. Mohamed, J. Supercond. Nov. Magn. 33, 2521–2525 (2020)

    Google Scholar 

  49. A.H. El-Sayed, M.A. Hamad, J. Supercond. Nov. Magn. 31, 1895 (2018)

    Google Scholar 

  50. A.M. Ewas, Ceram. Int. 43, 7660 (2017)

    Google Scholar 

  51. M.A. Hamad, J. Supercond. Nov. Magn. 28, 3329–3333 (2015)

    Google Scholar 

  52. M.A. Hamad, Magnetocaloric effect in Sr0.4Ba1.6-xLaxFeMoO6. J. Supercond. Nov. Magn. 27, 1777 (2014)

    Google Scholar 

  53. M.A. Hamad, Detecting giant electrocaloric properties of ferroelectric SbSI at room temperature. J. Adv. Dielect. 3, 1350008 (2013)

    ADS  Google Scholar 

  54. A.H. El-Sayed, M.A. Hamad, J. Supercond. Nov. Magn. 31, 1447 (2018)

    Google Scholar 

  55. M.A. Hamad, J. Supercond. Nov. Magn. 28, 2525–2528 (2015)

    Google Scholar 

  56. M.A. Hamad, Low magnetic field magnetocaloric effect in Gd5-xEuxGe4. J. Supercond. Nov. Magn. 29, 539–1543 (2016)

    Google Scholar 

  57. A.H. El-Sayed, M.A. Hamad, J. Supercond. Nov. Magn. 31, 4091–4094 (2018)

    Google Scholar 

  58. A.H. El-Sayed, M.A. Hamad, J. Supercond. Nov. Magn. 31, 3357 (2018)

    Google Scholar 

  59. M.A. Hamad, Lanthanum concentration effect of magnetocaloric properties in LaxMnO3-d. J. Supercond. Nov. Magn. 28, 173 (2015)

    Google Scholar 

  60. M.A. Hamad, Magnetocaloric effect in La-xCexMnO3. J. Adv. Ceram. 4, 206–210 (2015)

    Google Scholar 

  61. M.A. Hamad, Int. J. Thermophys. 34, 214 (2013)

    Google Scholar 

  62. A.H. El-Sayed, O.M. Hemeda, M.A. Hamad, A.M. Mohamed, Eur. Phys. J. Plus. 134, 227 (2019)

    Google Scholar 

  63. M.A. Hamad, Int. J. Thermophys. 36, 2748 (2015)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud. A. Hamad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamad, M.A., Hemeda, O.M., Alamri, H.R. et al. Investigations on Thermomagnetic Properties of YbFe2As2. J Low Temp Phys 202, 121–127 (2021). https://doi.org/10.1007/s10909-020-02528-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02528-w

Keywords

Navigation