Skip to main content
Log in

Plasmon modes in N-layer graphene structures at zero temperature

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We investigate the plasmon frequency and the broadening function corresponding to Landau damping in a N-MLG structure consisting of N, up to 5, MLG sheets at zero temperature. Our results present that plasmon dispersions in the system include an in-phase optical mode and \(N - 1\) out-of-phase acoustic ones. The optical (acoustic) plasmon frequency is higher (lower) than that of MLG at the same parameters. The broadening function of plasmon dispersions is quite similar to that in case of taking into account temperature effects. In addition, the increase in separation between layers increases (decreases) acoustic (optical) plasmon frequency, making plasmon curves become identical at smaller wave vector. Besides, the imbalance in carrier density in graphene sheets affects significantly on plasmon frequencies and plasmon pattern because it separates some plasmon branches far away from the others. However, the number of plasmon branches separated from the others depends mainly on the number of layers containing different carrier density but is independent of the order of these layers in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos et al., Science 306, 666–669 (2004)

    ADS  Google Scholar 

  2. A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    ADS  Google Scholar 

  3. A.K. Geim, K.S. Novoselov, Nature Mater 6, 183 (2009)

    ADS  Google Scholar 

  4. T. Vazifehshenas, T. Amlaki, M. Farmanbar, F. Parhizgar, Phys. Lett. A 374, 4899–4903 (2010)

    ADS  Google Scholar 

  5. E. McCann, Electronic Properties of Monolayer and Bilayer Graphene, In: Raza H. (eds) Graphene Nanoelectronics. Berlin: NanoScience and Technology Springer, 2011.

  6. S.A. Maier, Plasmonics—Fundamentals and Applications (Springer, New York, 2007)

    Google Scholar 

  7. K. Flensberg, B.Y.-K. Hu, Phys. Rev. B 52, 14796 (1995)

    ADS  Google Scholar 

  8. S.D. Sarma, S. Adam, E.H. Hwang, E. Rossi, Rev. Mod. Phys. 83, 407 (2011)

    ADS  Google Scholar 

  9. S.D. Sarma, E.H. Hwang, E. Rossi, Phys. Rev. B 81, 161407 (2010)

    ADS  Google Scholar 

  10. R. Sensarma, E.H. Hwang, S.D. Sarma, Phys. Rev. B 82, 195428 (2011)

    ADS  Google Scholar 

  11. T. Ando, A.B. Fowler, F. Stern, Rev. Mod. Phys. 54, 437 (1982)

    ADS  Google Scholar 

  12. V. Ryzhii, M. Ryzhii, V. Mitin, M.S. Shur, A. Satou, T. Otsuji, J. Appl. Phys. 113, 174506 (2013)

    ADS  Google Scholar 

  13. J.-S. Shin, J.-S. Kim, J.T. Kim, J. Opt. 17, 125801 (2015)

    ADS  Google Scholar 

  14. A. Politano, A. Pietro, G. Di Profio, V. Sanna, A. Cupolillo, S. Chakraborty, H. Arafa, E. Curcio, Adv. Mater. 29(2), 201603504 (2017)

    Google Scholar 

  15. J. Gosciniak, D.T.H. Tan, Nanotechnology 24, 185202 (2013)

    ADS  Google Scholar 

  16. A.N. Grigorenko, M. Polini, K.S. Novoselov, Nat. Photonics 6, 749–758 (2012)

    ADS  Google Scholar 

  17. M. Polini, R. Asgari, G. Borghi, Y. Barlas, T. Pereg-Barnea, A.H. MacDonald, Phys. Rev. B 77, 081411(R) (2008)

    ADS  Google Scholar 

  18. A. Politano, A. Cupolillo, G. Di Profio, H.A. Arafat, G. Chiarello, E. Curcio, J. Phys. Condens. Matter 28, 363003 (2016)

    Google Scholar 

  19. A. Politano, H.K. Yu, D. Farías, G. Chiarello, Phys. Rev. B 97, 035414 (2018)

    ADS  Google Scholar 

  20. A. Politano, G. Chiarello, C. Spinella, Mater. Sci. Semicond. Process. 65, 88 (2017)

    Google Scholar 

  21. A. Politano, G. Chiarello, Nanoscale 6, 10927 (2014)

    ADS  Google Scholar 

  22. A. Cupolillo, A. Politano, N. Ligato, D.M. Cid Perez, G. Chiarello, L.S. Caputi, Surf. Sci. 634, 76 (2015)

    ADS  Google Scholar 

  23. E.H. Hwang, S.D. Sarma, Phys. Rev. B 75, 205418 (2007)

    ADS  Google Scholar 

  24. E.H. Hwang, S.D. Sarma, Phys. Rev. B 80, 205418 (2009)

    ADS  Google Scholar 

  25. D.V. Tuan, N.Q. Khanh, Phys. E 54, 267 (2013)

    Google Scholar 

  26. S.M. Badalyan, F.M. Peeters, Phys. Rev. 85, 195444 (2012)

    ADS  Google Scholar 

  27. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, F. Xia, Nat. Nanotechnol. 7, 330 (2012)

    ADS  Google Scholar 

  28. J.-J. Zhu, S.M. Badalyan, F.M. Peeters, Phys. Rev. B 87, 085401 (2013)

    ADS  Google Scholar 

  29. A. Politano, A.R. Marino, V. Formoso, D. Farías, R. Miranda, G. Chiarello, Phys. Rev. B 84, 033401 (2011)

    ADS  Google Scholar 

  30. A. Politano, A.R. Marino, G. Chiarello, Phys. Rev. B 86, 085420 (2012)

    ADS  Google Scholar 

  31. A. Politano, V. Formoso, G. Chiarello, J. Phys. Condens. Matter 25, 345303 (2013)

    Google Scholar 

  32. N.V. Men, N.Q. Khanh, D.T.K. Phuong, Solid State Commun. 298, 113647 (2019)

    Google Scholar 

  33. N.V. Men, N.Q. Khanh, Phys. Lett. A 381, 3779 (2017)

    ADS  Google Scholar 

  34. A. Principi, M. Carrega, R. Asgari, V. Pellegrini, M. Polini, Phys. Rev. B 86, 085421 (2012)

    ADS  Google Scholar 

  35. S.D. Sarma, A. Madhukar, Phys. Rev. B 23, 805 (1981)

    ADS  Google Scholar 

  36. G.E. Santoro, G.F. Giuliani, Phys. Rev. B 37, 937 (1988)

    ADS  Google Scholar 

  37. B. Tanatar, B. Davoudi, Phys. Rev. B 63, 165328 (2003)

    ADS  Google Scholar 

  38. G. Gonzalez de la Cruz, Solid State Commun. 262, 11 (2017)

    ADS  Google Scholar 

  39. N.V. Men, N.Q. Khanh, Can. J. Phys. 96, 615 (2018)

    ADS  Google Scholar 

  40. D.T.K. Phuong, N.V. Men, Phys. Lett. A 383, 125971 (2019)

    Google Scholar 

  41. X. Feng, M. Salmeron, Appl. Phys. Lett. 102, 053116 (2013)

    ADS  Google Scholar 

  42. M.A. Kuroda, J. Tersoff, G.J. Martyna, Phys. Rev. Lett. 106, 116804 (2011)

    ADS  Google Scholar 

  43. G. Li, V. Semenenko, V. Perebeinos, P.Q. Liu, ACS Photonics 6(12), 3180–3185 (2019)

    Google Scholar 

Download references

Acknowledgements

This research is supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 103.01-2020.11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Men Nguyen Van.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong Thi Kim, P., Nguyen Van, M. Plasmon modes in N-layer graphene structures at zero temperature. J Low Temp Phys 201, 311–320 (2020). https://doi.org/10.1007/s10909-020-02503-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02503-5

Keywords

Navigation