Skip to main content
Log in

On the Closure Problem of the Coarse-Grained Hydrodynamics of Turbulent Superfluids

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The coarse-grained hydrodynamics of turbulent superfluid fluids describes the fluid flow in terms of two equations for the averaged normal and superfluid velocities. These two equations are coupled via the mutual friction term, which contains the quantity \({\mathcal {L}}(r,t)\)–the vortex line density (VLD) of the vortex tangle. The question of how to treat the quantity \({\mathcal {L}}(r,t)\)–the so-called closure procedure is crucial for the correct description of flow of turbulent superfluids. The article provides a critical analysis of several approaches to the closure procedure. The first one, which is usually referred to as HVBK method suggests to express the quantity \({\mathcal {L}}(r,t)\) via coarse-grained vorticity \(\nabla \times {\mathbf {v}}_{s}\) using the famous Feynman rule. This method and idea on the vortex bundle structure, which justifies the use of the HVBK approach, are analyzed and discussed in detail. Another approach that has been popular before, but is still used sometimes, is called the Gorter–Mellink relation. This method suggests that the VLD \({\mathcal {L}}(r,t)\) is proportional to the squared relative velocity between normal and superfluid components \(\propto (v_{n}-v_{s})^{2}\). One more variant of the closure procedure, discussed in the paper, is based on the method in which the vortex line density \({\mathcal {L}}(r,t)\) is not expressed directly via the velocity (and/or vorticity) field, but is an independent equipollent variable, controlled by a separate equation. The latter approach is called as hydrodynamics of superfluid turbulence (HST). The advantages and disadvantages of each method are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Gorter, J.H. Mellink, On the irreversible processes in liquid helium ii. Physica 15(3–4), 285–304 (1949)

    ADS  Google Scholar 

  2. R. P. Feynman. Progress in Low Temperature Physics, Vol. 1, p. 17. North-Holland, Amsterdam (1955)

  3. I.M. Khalatnikov, An Introduction to the Theory of Superfluidity (Benjamin, New York/Amsterdam, 1965)

    Google Scholar 

  4. W. Frank Vinen, D. Shoenberg, Mutual friction in a heat current in liquid helium ii iii. theory of the mutual friction. Proc. R. Soc. Lond. A 242(1231), 493–515 (1957)

    Google Scholar 

  5. S.K. Nemirovskii, V.V. Lebedev, The hydrodynamic of superfluid turbulence. Sov. Phys. JETP 57, 1009 (1983)

    Google Scholar 

  6. S.K. Nemirovskii, W. Fiszdon, Chaotic quantized vortices and hydrodynamic processes in superfluid helium. Rev. Mod. Phys. 67(1), 37–84 (1995)

    ADS  Google Scholar 

  7. K.W. Schwarz, Three-dimensional vortex dynamics in superfluid \(he4\): homogeneous superfluid turbulence. Phys. Rev. B 38(4), 2398–2417 (1988)

    ADS  MathSciNet  Google Scholar 

  8. D. Jou, M.S. Mongiovi, M. Sciacca, Hydrodynamics equations of anisotropic, polarized and inhomogeneous superfluid vortex tangles. Physica D 240, 249–258 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  9. E.B. Sonin, Dynamics of Quantised Vortices in Superfluids (Cambridge University Press, Cambridge, 2016)

    MATH  Google Scholar 

  10. A.W. Baggaley, J. Laurie, C.F. Barenghi, Vortex-density fluctuations, energy spectra, and vortical regions in superfluid turbulence. Phys. Rev. Lett. 109, 205304 (2012)

    ADS  Google Scholar 

  11. A.W. Baggaley, C.F. Barenghi, A. Shukurov, Y.A. Sergeev, Coherent vortex structures in quantum turbulence. EPL (Europhys. Lett.) 98(2), 26002 (2012)

    ADS  Google Scholar 

  12. N. Sasa, T. Kano, M. Machida, V.S. L’vov, O. Rudenko, M. Tsubota, Energy spectra of quantum turbulence: large-scale simulation and modeling. Phys. Rev. B 84, 054525 (2011)

    ADS  Google Scholar 

  13. D.C. Samuels, Response of superfluid vortex filaments to concentrated normal-fluid vorticity. Phys. Rev. B 47(2), 1107–1110 (1993)

    ADS  Google Scholar 

  14. G.E. Volovik, On developed superfluid turbulence. J. Low Temp. Phys. 136(5), 309–327 (2004)

    ADS  Google Scholar 

  15. D. Kivotides, Spreading of superfluid vorticity clouds in normal-fluid turbulence. J. Fluid Mech. 668, 58–75 (2011)

    ADS  MATH  Google Scholar 

  16. D. Kivotides, The impact of kinematic simulations on quantum turbulence theory, in New Approaches in Modeling Multiphase Flows and Dispersion in Turbulence, Fractal Methods and Synthetic Turbulence, volume 18 of ERCOFTAC Series, ed. by F.C.G.A. Nicolleau, C. Cambon, J.-M. Redondo, J.C. Vassilicos, M. Reeks, A.F. Nowakowski (Springer, Netherlands, 2012), pp. 1–8

  17. D. Kivotides, Energy spectra of finite temperature superfluid helium-4 turbulence. Phys. Fluids (1994-present) 26(10), 105105 (2014)

    ADS  Google Scholar 

  18. D. Kivotides, Mutual-friction induced instability of normal-fluid vortex tubes in superfluid helium-4. Phys. Lett. A 382(22), 1481–1485 (2018)

    ADS  Google Scholar 

  19. E. Kozik, B. Svistunov, Theory of decay of superfluid turbulence in low-temperature limit. J. Low Temp. Phys. 156, 215–267 (2009)

    ADS  Google Scholar 

  20. S.K. Nemirovskii, Energy spectrum of the quantum vortices configurations. Low Temp. Phys. 41(6), 608–614 (2015)

    Google Scholar 

  21. P.-E. Roche, P. Diribarne, T. Didelot, O. Francais, L. Rousseau, H. Willaime, Vortex density spectrum of quantum turbulence. EPL (Europhys. Lett.) 77(6), 66002 (2007)

    ADS  Google Scholar 

  22. D.I. Bradley, S.N. Fisher, A.M. Guénault, R.P. Haley, S. O’Sullivan, G.R. Pickett, V. Tsepelin, Fluctuations and correlations of pure quantum turbulence in superfluid \(^{3}{{ \rm He}}-{{\rm B}}\). Phys. Rev. Lett. 101, 065302 (2008)

    ADS  Google Scholar 

  23. S.K. Nemirovskii, Fluctuations of the vortex line density in turbulent flows of quantum fluids. Phys. Rev. B 86, 224505 (2012)

    ADS  Google Scholar 

  24. M. Kursa, K. Bajer, T. Lipniacki, Cascade of vortex loops initiated by a single reconnection of quantum vortices. Phys. Rev. B 83, 014515 (2011)

    ADS  Google Scholar 

  25. R.M. Kerr, Vortex stretching as a mechanism for quantum kinetic energy decay. Phys. Rev. Lett. 106, 224501 (2011)

    ADS  Google Scholar 

  26. S.Z. Alamri, A.J. Youd, C.F. Barenghi, Reconnection of superfluid vortex bundles. Phys. Rev. Lett. 101(21), 215302 (2008)

    ADS  Google Scholar 

  27. A.W. Baggaley, The importance of vortex bundles in quantum turbulence at absolute zero. Phys. Fluids 24(5), 055109 (2012)

    ADS  Google Scholar 

  28. M.V. Melander, F. Hussain, Cross-linking of two antiparallel vortex tubes. Phys. Fluids A 1, 633 (1989)

    ADS  Google Scholar 

  29. N.J. Zabusky, M.V. Melander, Three-dimensional vortex tube reconnection: Morphology for orthogonally-offset tubes. Physica D 37(1–3), 555–562 (1989)

    ADS  MathSciNet  Google Scholar 

  30. S. Kida, M. Takaoka, F. Hussain, Collision of two vortex rings. J. Fluid Mech. 230, 583–646 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  31. O.N. Boratav, R.B. Pelz, N.J. Zabusky, Reconnection in orthogonally interacting vortex tubes: Direct numerical simulations and quantifications. Phys. Fluids A 4, 581 (1992)

    ADS  MATH  Google Scholar 

  32. B.V. Svistunov, Superfluid turbulence in the low-temperature limit. Phys. Rev. B 52(5), 3647–3653 (1995)

    ADS  Google Scholar 

  33. E.B. Sonin, Vortex oscillations and hydrodynamics of rotating superfluids. Rev. Mod. Phys. 59(1), 87 (1987)

    ADS  MathSciNet  Google Scholar 

  34. R.N. Hills, P.H. Roberts, Superfluid mechanics for a high density of vortex lines. Arch. Ration. Mech. Anal. 66(1), 43–71 (1977)

    MathSciNet  MATH  Google Scholar 

  35. D.D. Holm, Introduction to hvbk Dynamics. In Quantized Vortex Dynamics (Springer, Berlin, 2001)

    MATH  Google Scholar 

  36. R.J. Donnelly, Cryogenic fluid dynamics. J. Phys.: Condens. Matter 11(40), 7783–7834 (1999)

    ADS  Google Scholar 

  37. S.K. Nemirovskii, Nonuniform quantum turbulence in superfluids. Phys. Rev. B 97, 134511 (2018)

    ADS  Google Scholar 

  38. D. Jou, M.S. Mongiovì, Nonequilibrium thermodynamics of unsteady superfluid turbulence in counterflow and rotating situations. Phys. Rev. B 72, 144517 (2005)

    ADS  Google Scholar 

  39. L. Kondaurova, V. Efimov, A. Tsoi, Influence of quantum turbulence on the processes of heat transfer and boiling in superfluid helium. J. Low Temp. Phys. 187(1), 80–89 (2017)

    ADS  Google Scholar 

  40. L. Boué, V. L’vov, A. Pomyalov, I. Procaccia, Enhancement of intermittency in superfluid turbulence. Phys. Rev. Lett. 110, 014502 (2013)

    ADS  Google Scholar 

  41. V.S. Lvov, S.V. Nazarenko, G.E. Volovik, Energy spectra of developed superfluid turbulence. JETP Lett. 80, 479–483 (2004)

    ADS  Google Scholar 

  42. J. Bertolaccini, E. Lévêque, P.-E. Roche, Disproportionate entrance length in superfluid flows and the puzzle of counterflow instabilities. Phys. Rev. Fluids 2, 123902 (2017)

    ADS  Google Scholar 

  43. D.H. Wacks, C.F. Barenghi, Shell model of superfluid turbulence. Physical Review B 84(18), 184505 (2011)

    ADS  Google Scholar 

  44. L. Skrbek, K.R. Sreenivasan, Developed quantum turbulence and its decay. Phys. Fluids 24(1), 011301 (2012)

    ADS  Google Scholar 

  45. J. Salort, P.-E. Roche, E. Leveque, Mesoscale equipartition of kinetic energy in quantum turbulence. EPL (Europhys. Lett.) 94(2), 24001 (2011)

    ADS  Google Scholar 

  46. R.J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 1991)

    Google Scholar 

  47. S.W. Van Sciver, Helium Cryogenics. International Cryogenics Monograph Series (Springer, Berlin, 2013)

    Google Scholar 

  48. W.F. Vinen, Mutual friction in a heat current in liquid helium ii. iii. theory of the mutual friction. Proc. R. Soc. Lond. A 242, 493–515 (1957)

    ADS  Google Scholar 

  49. W.F. Vinen, Mutual friction in a heat current in liquid helium ii. i. experiments on steady heat currents. Proc. R. Soc. London A 240, 114 (1957)

    ADS  Google Scholar 

  50. W.F. Vinen, Mutual friction in a heat current in liquid helium ii. ii. experiments on transient effects. Proc. R. Soc. Lond. A 240, 128 (1957)

    ADS  Google Scholar 

  51. V.B. Eltsov, A.P. Finne, R. Hanninen, J. Kopu, M. Krusius, M. Tsubota, E.V. Thuneberg, Twisted vortex state. Phys. Rev. Lett. 96, 215302 (2006)

    ADS  Google Scholar 

  52. V.B. Eltsov, A.I. Golov, R. de Graaf, R. Hanninen, M. Krusius, V.S. L’vov, R.E. Solntsev, Quantum turbulence in a propagating superfluid vortex front. Phys. Rev. Lett. 99, 265301 (2007)

    ADS  Google Scholar 

  53. V.B. Eltsov, R. de Graaf, R. Hanninen, M. Krusius, R.E. Solntsev, V.S. L’vov, A.I. Golov, P.M. Walmsley, Chapter 2 turbulent dynamics in rotating helium superfluids, in: Progress in Low Temperature Physics: Quantum Turbulence, volume 16 of Progress in Low Temperature Physics, pp. 45 – 146. Elsevier, Amsterdam (2009)

  54. R.G.K.M. Aarts, A.T.A.M. de Waele, Numerical investigation of the flow properties of he ii. Phys. Rev. B 50(14), 10069–10079 (1994)

    ADS  Google Scholar 

  55. M. Tsubota, T. Araki, S.K. Nemirovskii, Dynamics of vortex tangle without mutual friction in superfluid \(4he\). Phys. Rev. B 62(17), 11751–11762 (2000)

    ADS  MATH  Google Scholar 

  56. N.G. Berloff, B.V. Svistunov, Scenario of strongly nonequilibrated bose-einstein condensation. Phys. Rev. A 66(1), 013603 (2002)

    ADS  Google Scholar 

  57. L. Kondaurova, V. Andryuschenko, S. Nemirovskii, Numerical simulations of superfluid turbulence under periodic conditions. J. Low Temp. Phys. 150, 415–419 (2008)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey K. Nemirovskii.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The study on the Hall-Vinen-Bekarevich-Khalatnikov (HVBK) approach was carried out under state contract with IT SB RAS (No. 17-117022850027-5), the study on the Hydrodynamics of Superfluid Turbulence (HST) method was financially supported by RFBR Russian Science Foundation (Project No. 18-08-00576)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemirovskii, S.K. On the Closure Problem of the Coarse-Grained Hydrodynamics of Turbulent Superfluids. J Low Temp Phys 201, 254–268 (2020). https://doi.org/10.1007/s10909-020-02483-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02483-6

Keywords

Navigation