Skip to main content
Log in

Structure and Optical Band Gap of Inverse Spinel Zn2SnO4 Epitaxial Films

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Inverse spinel Zn2SnO4 (ZTO) films have been grown on MgO(001) and MgAl2O4(001) substrates by pulsed laser deposition. Detailed structural investigation by high-resolution X-ray diffraction, including conventional θ linear scans, φ scans and reciprocal space mappings, revealed the epitaxial characteristics of the ZTO films. Meanwhile, the in-plane and out-of-plane lattice parameters were extracted to be about a = b=8.615 Å and c = 8.629 Å from the symmetry and asymmetry reflections. The surface morphologies of ZTO films were examined by atomic force microscopy, and all the films exhibit very smooth surfaces. X-ray photoelectron spectroscopy measurement was taken to disclose the oxidation states of elements. The optical properties of ZTO films were probed by measuring the optical transmittances. The band gaps of ZTO films grown on MgO(001) and MgAl2O4(001) were extracted to be 4.26 eV and 4.30 eV by extrapolating the absorption edge, respectively. Theoretically, the band structure was also calculated using density functional theory. The results show that ZTO film is a direct band gap semiconductor with the band gap value of 2.64 eV. Such a wide band gap semiconductor with an inverse spinel structure should be of high interest for epitaxial heterojunction and optical device application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Minami, H. Sonohara, S. Takata, H. Sato, Highly transparent and conductive zinc-stannate thin films prepared by RF magnetron sputtering. Jpn. J. Appl. Phys. 33, L1693 (1994)

    Article  ADS  Google Scholar 

  2. J. Dou, X.Y. Li, Y.F. Li, Y.M. Chen, M.D. Wei, Fabrication of Zn2SnO4 microspheres with controllable shell numbers for highly efficient dye-sensitized solar cells. Sol. Energy 181, 424–429 (2019)

    Article  ADS  Google Scholar 

  3. Y.C. Chen, Y.R. Shen, Growth and dielectric characterizations of zinc stannate thin films deposited by RF magnetron sputtering. Integr. Ferroelectr. 192, 80–87 (2018)

    Article  Google Scholar 

  4. T. Minami, S. Takata, H. Sato, H. Sonohara, Properties of transparent zinc-stannate conducting films prepared by radio frequency magnetron sputtering. J. Vac. Sci. Technol. A 13, 1095 (1995)

    Article  ADS  Google Scholar 

  5. M. Zhang, X. Cui, Y.F. Wang, B. Wang, M.D. Ye, W.L. Wang, C.Y. Ma, Z.Q. Lin, Simple route to interconnected hierarchically structured, porous Zn2SnO4 nanospheres as electron transport layers for efficient perovskite solar cells. Nano Energy 71, 104620 (2020)

    Article  Google Scholar 

  6. M.A. Alpuche-Aviles, Y. Wu, Photoelectrochemical study of the band structure of Zn2SnO4 prepared by the hydrothermal method. J. Am. Chem. Soc. 131, 3216–3224 (2009)

    Article  Google Scholar 

  7. L.S. Oh, D.H. Kim, J.A. Lee, S.S. Seong, J.W. Lee, I.J. Park, M.J. Ko, N.G. Park, S.G. Pyo, K. Hong, J.Y. Kim, Zn2SnO4-based photoelectrodes for organolead halide perovskite solar cells. J. Phys. Chem. C 118, 22991–22994 (2014)

    Article  Google Scholar 

  8. D.W. Kim, S.S. Shin, I.S. Cho, S. Lee, D.H. Kim, C.W. Lee, H.S. Jung, K.S. Hong, Synthesis and photovoltaic property of fine and uniform Zn2SnO4 nanoparticles. Nanoscale 4, 557–562 (2012)

    Article  ADS  Google Scholar 

  9. M.Q. Tai, X.Y. Zhao, H.P. Shen, Y. Guo, M.H. Zhang, Y. Zhou, X. Li, Z.B. Yao, X.W. Yin, J.H. Han, H. Lin, Ultrathin Zn2SnO4 (ZTO) passivated ZnO nanocone arrays for efficient and stable perovskite solar cells. Chem. Eng. J. 361, 60–66 (2019)

    Article  Google Scholar 

  10. S.S. Shin, W.S. Yang, J.H. Noh, J.H. Suk, N.J. Jeon, J.H. Park, J.S. Kim, W.M. Seong, S.I. Seok, High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C. Nat. Commun. 6, 7410 (2015)

    Article  ADS  Google Scholar 

  11. D. Segev, S.H. Wei, Structure-derived electronic and optical properties of transparent conducting oxides. Phys. Rev. B 71, 125129 (2005)

    Article  ADS  Google Scholar 

  12. V. Stevanovic, M. d’Avezac, A. Zunger, Universal electrostatic origin of cation ordering in A(2)BO(4) spinel oxides. J. Am. Chem. Soc. 133, 11649–11654 (2011)

    Article  Google Scholar 

  13. Y. Zhao, L.F. Hu, H. Liu, M.F. Liao, X.S. Fang, L.M. Wu, Band gap tunable Zn2SnO4 nanocubes through thermal effect and their outstanding ultraviolet light photoresponse. Sci. Rep. 4, 6847 (2014)

    Article  ADS  Google Scholar 

  14. S. Kozhukharov, S. Tchaoushev, Spray pyrolysis equipment for various applications. J. Chem. Technol. Metall. 48, 111–118 (2013)

    Google Scholar 

  15. Y.C. Chen, H.M. You, Microstructures and dielectric properties of inverse-spinel structure Zn2SnO4 thin films by RF magnetron sputtering. J. Mater. Sci. Mater. Electron. 27, 2031–2035 (2016)

    Article  Google Scholar 

  16. G. Fu, H. Chen, Z.X. Chen, J.X. Zhang, H. Kohler, Humidity sensitive characteristics of Zn2SnO4–LiZnVO4 thick films prepared by the sol–gel method. Sens. Actuators B 81, 308–312 (2002)

    Article  Google Scholar 

  17. J.X. Wang, S.S. Xie, Y. Gao et al., Growth and characterization of axially periodic Zn2SnO4 (ZTO) nanostructures. J. Cryst. Growth 267, 177–183 (2004)

    Article  ADS  Google Scholar 

  18. S.H. Wei, S.B. Zhang, First-principles study of cation distribution in eighteen closed-shell AIIBIII2 O4 and AIVBII2 O4 spinel oxides. Phys. Rev. B 63, 045112 (2001)

    Article  ADS  Google Scholar 

  19. X.Y. Li, Y.L. Wang, W.F. Liu, G.S. Jiang, C.F. Zhu, Study of oxygen vacancies influence on the lattice parameter in ZnO thin film. Mater. Lett. 85, 25–28 (2012)

    Article  Google Scholar 

  20. Y.T. Zhang, G.T. Du, X.Q. Wang, W.C. Li, X.T. Yang, Y. Ma, B.J. Zhao, H.J. Yang, D.L. Liu, S.R. Yang, X-ray photoelectron spectroscopy study of ZnO films grown bymetal-organic chemical vapor deposition. J. Cryst. Growth 252, 180–183 (2003)

    Article  ADS  Google Scholar 

  21. T. Baidya, A. Gupta, P.A. Deshpandey, G. Madras, M.S. Hegde, High oxygen storage capacity and high rates of CO oxidation and NO reduction catalytic properties of Ce1−xSnxO2 and Ce0.78Sn0.2Pd0.02O2−δ. J. Phys. Chem. C 113, 4059–4068 (2009)

    Article  Google Scholar 

  22. M. Kwoka, L. Ottaviano, M. Passacantando, S. Santucci, G. Czempik, J. Szuber, XPS study of the surface chemistry of L-CVD SnO2 thin films after oxidation. Thin Solid Films 490, 36–42 (2005)

    Article  ADS  Google Scholar 

  23. F. Demichelis, G. Kanidakis, A. Tagliaferro, E. Tresso, New approach to optical analysis of absorbing thin solid films. Appl. Opt. 26, 1737 (1987)

    Article  ADS  Google Scholar 

  24. D.L. Young, H. Moutinho, Y.F. Yan, T.J. Coutts, Growth and characterization of radio frequency magnetron sputter-deposited zincstannate thin films. J. Appl. Phys. 92, 310 (2002)

    Article  ADS  Google Scholar 

  25. I. Saafi, R. Dridi, A. Mhamdi, M. Haj Lakhdar, K. Boubaker, A. Amlouk, M. Amlouk, Study of thickness effects on structural and optical properties of sprayed Zn2SnO4thin films. Optik 126, 4382–4386 (2015)

    Article  ADS  Google Scholar 

  26. A.O. Salohub, A.A. Voznyi, O.V. Klymov, N.V. Safryuk, D.I. Kurbatov, A.S. Opanasyuk, Determination of fundamental optical constants of Zn2SnO4 films. Semicond. Phys. Quantum Electron. Optoelectron. 20, 79–84 (2017)

    Article  Google Scholar 

  27. K. Satoh, Y. Kakehi, A. Okamoto, S. Murakami, F. Uratani, T. Yotsuya, Influence of oxygen flow ratio on properties of Zn2SnO4 thin films deposited by RF magnetron sputtering. Jpn. J. Appl. Phys. 44, 34–37 (2005)

    Article  ADS  Google Scholar 

  28. L. Gracia, A. Beltran, J. Andres, A theoretical study on the pressure-induced phase transitions in the inverse spinel structure Zn2SnO4. J. Phys. Chem. C 115, 7740–7746 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (No. 11974127) and Natural Science Foundation of Anhui Higher Education Institutions of China (No. KJ2019ZD40).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinzhuang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, F., Liu, Q. Structure and Optical Band Gap of Inverse Spinel Zn2SnO4 Epitaxial Films. J Low Temp Phys 200, 142–151 (2020). https://doi.org/10.1007/s10909-020-02479-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02479-2

Keywords

Navigation