Skip to main content
Log in

Modeling Low-TC Transition-Edge Sensors Made of NS Bilayers: The Specific Interface Resistance

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

One way of making a transition-edge sensor (TES) is by utilizing the proximity effect, in which the \(T_{C}\) of a superconducting film is reduced with a normal metal film in metallic contact. The \(T_{C}\) of a bilayer TES can be estimated by solving the Usadel equations with given boundary conditions. The classical boundary conditions of a bilayer include a specific interface resistance being temperature-independent. In this paper, we will introduce a temperature-dependent specific interface resistance. By fitting the measured \(T_{C}\) data of Ir/Au bilayers from the literature to a \(T_{C}\) calculation model, we will compare the fit parameters and fit errors with the temperature-dependent specific interface resistance described in this work and with the classical temperature-independent specific interface resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. G. Wang, C.L. Chang, V. Yefremenko, J. Ding, V. Novosad, J. Feintzeig et al., CUPID. arXiv:1504.03599 (2015)

  2. G. Wang, C.L. Chang, V. Yefremenko, J. Ding, V. Novosad, J. Feintzeig et al., R&D towards CUPID. arXiv:1504.03612v1 (2015)

  3. G. Angloher, A. Bento, C. Bucci, L. Canonica, X. Defay, A. Erb et al., Eur. Phys. J. C 72, 25 (2016)

    Article  ADS  Google Scholar 

  4. S.A. Hertel, A. Biekert, J. Lin, V. Velan, D.N. McKinsey, arXiv:1810.06283v1 (2019)

  5. J.N. Ullom, D.A. Bennett, Supercond. Sci. Technol. 28, 084003 (2015)

    Article  ADS  Google Scholar 

  6. K.D. Irwin, G.C. Hilton, Transition-edge sensors, in Cryogenic Particle Detection, ed. C. Enss (Springer, 2005)

  7. P.G. de Gennes, Rev. Mod. Phys. 36, 225 (1964)

    Article  ADS  Google Scholar 

  8. M. Galeazzi, D. Bogorin, R. Molina, M. Ribiro Gomes, T. Saab, AIP Conf. Proc. 1185, 558 (2009)

    Article  ADS  Google Scholar 

  9. U. Nagel, A. Nowak, H.-J. Gebauer, P. Coiling, S. Cooper, D. Dummer et al., J. Appl. Phys. 110, 063919 (1994)

    Google Scholar 

  10. R. Hennings-Yeomans, C.L. Chang, J. Ding, A. Drobizhev, B.K. Fujikawa, S. Han et al., arXiv:1711.03648v1 (2017)

  11. G. Wang, J. Beeman, C.L. Chang, J. Ding, A. Drobizhev, B.K. Fujikawa et al., IEEE Trans. Appl. Supercond. 27, 2100405 (2017)

    Google Scholar 

  12. K.D. Usadel, Phys. Rev. Lett. 25, 507 (1970)

    Article  ADS  Google Scholar 

  13. M.Y. Kupriyanov, V.F. Lukichev, Sov. Phys. JETP 67, 1163 (1988)

    Google Scholar 

  14. J.M. Martinis, G.C. Hilton, K.D. Irwin, D.A. Wollman, Nucl. Instrum. Methods Phys. Res. Sect. A 444(1/2), 23 (2000)

    Article  ADS  Google Scholar 

  15. G.E. Blonder, M. Tinkham, T.M. Klapwijk, Phys. Rev. B 25, 4515 (1982)

    Article  ADS  Google Scholar 

  16. A.F. Andreev, Sov. Phys. JETP 19, 1228 (1964)

    Google Scholar 

  17. A.V. Zaitsev, Sov. Phys. JETP 59, 5 (1984)

    Google Scholar 

  18. J. Clarke, Phys. Rev. Lett. 28, 1363 (1972)

    Article  ADS  Google Scholar 

  19. M. Tinkham, J. Clarke, Phys. Rev. Lett. 28, 1366 (1972)

    Article  ADS  Google Scholar 

  20. T.Y. Hsiang, J. Clarke, Phys. Rev. B 21, 945 (1980)

    Article  ADS  Google Scholar 

  21. D.W. Floet, J.J.A. Baselmans, T.M. Klapwijk, J.R. Gao, Appl. Phys. Lett. 73, 2826 (1998)

    Article  ADS  Google Scholar 

  22. C.J. Pethick, H. Smith, J. Phys. C 13, 6313 (1980)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work at Argonne National Laboratory, including the use of facility at the Center for Nanoscale Materials (CNM), was supported by Office of Science and Office of Basic Energy Sciences of the US Department of Energy, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Chang, C.L., Lisovenko, M. et al. Modeling Low-TC Transition-Edge Sensors Made of NS Bilayers: The Specific Interface Resistance. J Low Temp Phys 200, 220–225 (2020). https://doi.org/10.1007/s10909-020-02451-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02451-0

Keywords

Navigation