Skip to main content

Sensitivity of the Prime-Cam Instrument on the CCAT-Prime Telescope

Abstract

CCAT-prime is a new 6 m crossed Dragone telescope designed to characterize the cosmic microwave background (CMB) polarization and foregrounds, measure the Sunyaev–Zel’dovich effects of galaxy clusters, map the [CII] emission intensity from the epoch of reionization (EoR), and monitor accretion luminosity over multiyear timescales of hundreds of protostars in the Milky Way. CCAT-prime will make observations from a 5600-m-altitude site on Cerro Chajnantor in the Atacama Desert of northern Chile. The novel optical design of the telescope combined with high-surface-accuracy (\({<}\,10 \,\upmu\)m) mirrors and the exceptional atmospheric conditions of the site will enable sensitive broadband, polarimetric, and spectroscopic surveys at sub-millimeter to millimeter wavelengths. Prime-Cam, the first light instrument for CCAT-prime, consists of a 1.8-m-diameter cryostat that can house seven individual instrument modules. Each instrument module, optimized for a specific science goal, will use state-of-the-art kinetic inductance detector (KID) arrays operated at \({\sim }\,100\) mK and Fabry–Perot interferometers (FPI) for the EoR science. Prime-Cam will be commissioned with staged deployments to populate the seven instrument modules. The full instrument will consist of 60,000 polarimetric KIDs at a combination of 220/280/350/410 GHz, 31,000 KIDS at 250/360 GHz coupled with FPIs, and 21,000 polarimetric KIDs at 850 GHz. Prime-Cam is currently being built, and the CCAT-prime telescope is designed and under construction by Vertex Antennentechnik GmbH to achieve first light in 2021. CCAT-prime is also a potential telescope platform for the future CMB Stage IV observations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. 1.

    Xilinx RFSoC website: https://www.xilinx.com/products/silicon-devices/soc/rfsoc.html.

References

  1. 1.

    G.J. Stacey et al., Volume 10700 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p. 107001M (2018)

  2. 2.

    T. Herter, et al., BAAS, 51, 213 (2019)

    Google Scholar 

  3. 3.

    A. Lewis, JCAP 2013(8), 053 (2013)

    Article  Google Scholar 

  4. 4.

    E. Alipour, K. Sigurdson, C.M. Hirata, Phys. Rev. D 91(8), 083520 (2015)

    ADS  Article  Google Scholar 

  5. 5.

    S.W. Henderson et al., J. Low Temp. Phys. 184, 772–779 (2016)

    ADS  Article  Google Scholar 

  6. 6.

    P. Ade et al., JCAP 2019(2), 056 (2019)

    MathSciNet  Article  Google Scholar 

  7. 7.

    E.-M. Mueller, F. de Bernardis, R. Bean, M.D. Niemack, Astrophys. J. 808(1), 47 (2015)

    ADS  Article  Google Scholar 

  8. 8.

    E.-M. Mueller, F. de Bernardis, R. Bean, M.D. Niemack, Phys. Rev. D 92(6), 063501 (2015)

    ADS  Article  Google Scholar 

  9. 9.

    J. Erler, K. Basu, J. Chluba, F. Bertoldi, Mon. Not. R. Astron. Soc. 476(3), 3360–3381 (2018)

    ADS  Article  Google Scholar 

  10. 10.

    A. Mittal, F. de Bernardis, M.D. Niemack, J. Cosmol. Astro Part. Phys. 2018(2), 032 (2018)

    Article  Google Scholar 

  11. 11.

    Y. Gong et al., ApJ 745(1), 49 (2012)

    ADS  Article  Google Scholar 

  12. 12.

    C. Creque-Sarbinowski, M. Kamionkowski, Phys. Rev. D 98(6), 063524 (2018)

    ADS  Article  Google Scholar 

  13. 13.

    E. Komatsu et al., Astro 2010: The Astronomy and Astrophysics Decadal Survey, vol. 2010, p. 158 (2009)

  14. 14.

    A.M. Dizgah, G.K. Keating, A. Fialkov, ApJ 870(1), L4 (2019)

    ADS  Article  Google Scholar 

  15. 15.

    E. Kovetz et al., BAAS 51(3), 101 (2019)

    Google Scholar 

  16. 16.

    S.W. Henderson et al., Volume 9914 of Proceedings of SPIE, p. 99141G (2016)

  17. 17.

    A.N. Bender et al., Volume 9914 of Proceedings of SPIE, p. 99141D (2016)

  18. 18.

    N. Galitzki et al., Volume 10708 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p. 1070804 (2018)

  19. 19.

    J.E. Austermann et al., J. Low Temp. Phys. 193(3–4), 120–127 (2018)

    ADS  Article  Google Scholar 

  20. 20.

    N.P. Lourie et al., Volume 10708 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p. 107080L (2018)

  21. 21.

    S. Masi et al., JCAP 2019(7), 003 (2019)

    Article  Google Scholar 

  22. 22.

    A. Catalano et al., J. Low Temp. Phys. 193(5–6), 916–922 (2018)

    ADS  Article  Google Scholar 

  23. 23.

    J.E. Carlstrom et al., PASP 123(903), 568 (2011)

    ADS  Article  Google Scholar 

  24. 24.

    A.T. Crites et al., Volume 9153 of Proceddings of SPIE, p. 91531W (2014)

  25. 25.

    G. Lagache, Volume 333 of IAU Symposium, p. 228–233 (2018)

  26. 26.

    S.C. Parshley et al., Volume 10700 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p. 1070041 (2018)

  27. 27.

    M.D. Niemack, Appl. Opt. 55(7), 1686 (2016)

    ADS  Article  Google Scholar 

  28. 28.

    S.C. Parshley et al., Volume 10700 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p. 107005X (2018)

  29. 29.

    E.M. Vavagiakis et al., Volume 10708 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p. 107081U (2018)

  30. 30.

    S.R. Dicker et al., Volume 10700 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p. 107003E (2018)

  31. 31.

    R. Datta et al., Appl. Opt. 52(36), 8747 (2013)

    ADS  Article  Google Scholar 

  32. 32.

    S.J.E. Radford, J.B. Peterson, PASP 128(965), 075001 (2016)

    ADS  Article  Google Scholar 

  33. 33.

    S.M. Duff et al., J. Low Temp. Phys. 184, 634–641 (2016)

    ADS  Article  Google Scholar 

  34. 34.

    S.P. Ho et al., J. Low Temp. Phys. 184(3), 559–567 (2016)

    ADS  Article  Google Scholar 

  35. 35.

    N. Cothard et al., J. Low Temp. Phys.. https://doi.org/10.1007/s10909-019-02297-1

  36. 36.

    CCAT Collaboration (in prep)

  37. 37.

    G.J. Stacey et al., SWCam: the short wavelength camera for the CCAT Observatory, Volume 9153 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p. 91530L (2014)

  38. 38.

    S. Paine, The am atmospheric model (version 10.0). Zenodo (2018). https://doi.org/10.5281/zenodo.1193646

  39. 39.

    C.A. Hill et al., Volume 10708 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p. 1070842 (2018)

  40. 40.

    T. Louis et al., JCAP 6, 031 (2017)

    ADS  Article  Google Scholar 

  41. 41.

    S.E. Harper et al., Mon. Not. R. Astron. Soc. 478(2), 2416–2437 (2018)

    ADS  Article  Google Scholar 

  42. 42.

    T. Chen, R.A. Battye, A.A. Costa, C. Dickinson, S.E. Harper, arXiv e-prints, arXiv:1907.12132 (2019)

Download references

Acknowledgements

SKC acknowledges support from the Cornell Presidential Postdoctoral Fellowship. MDN acknowledges support from NSF award AST-1454881. Work by NFC was supported by NASA Space Technology Research Fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. K. Choi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choi, S.K., Austermann, J., Basu, K. et al. Sensitivity of the Prime-Cam Instrument on the CCAT-Prime Telescope. J Low Temp Phys 199, 1089–1097 (2020). https://doi.org/10.1007/s10909-020-02428-z

Download citation

Keywords

  • Cosmic microwave background
  • Epoch of reionization
  • Kinetic inductance detector
  • Transition-edge sensor
  • CCAT-prime
  • Prime-Cam