Skip to main content
Log in

AC Conduction Mechanism in (Cu)x/(CuTl)-1223 Nanoparticles–Superconductor Composites

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Copper (Cu) nanoparticles (NPs) were prepared by sol–gel process, and superconducting (Cu0.5Tl0.5)Ba2Ca2Cu3O10−δ {(CuTl)-1223} phase was synthesized by conventional solid-state reaction. The desired (Cu)x/(CuTl)-1223, x = 0–4.0 wt% composites, were obtained by adding Cu NPs in superconducting (CuTl)-1223 phase. These composites were characterized by X-ray diffraction, DC-resistivity versus temperature (RT) and AC conduction measurements. The tetragonal crystal structure with P4/mmm space group of the host superconducting (CuTl)-1223 phase remained dominant after the addition of Cu NPs. The zero-resistivity critical temperature Tc(0) (K) was increased, and normal state resistivity was decreased after addition of Cu NPs in CuTl-1223 phase. The frequency- and temperature-dependent AC conduction properties of (Cu)x/(CuTl)-1223 composites were explored via dielectric, impedance and electric modulus measurements. The dielectric constant (ɛ/r, ɛ//r) and loss tangent (tanδ) were suppressed, while AC conductivity (σac) was improved with the addition of Cu NPs in (CuTl)-1223 phase. Comparatively, the capacitance associated with grain boundaries regions was found to be greater than the capacitance associated with grain regions. The capacitive behavior of the grain boundaries was decreased, while that of the grains was increased with increasing operating temperature for all these composite samples. The shifting of peaks in imaginary part of the electric modulus (M//) versus frequency (f) spectra toward lower frequency regime with increasing Cu NPs contents in superconducting (CuTl)-1223 phase is witnessed for the existence of non-Debye relaxation in the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M. Hasan, M.C. Nguyen, H. Kim, S.W. You, Y.S. Jeon, D.T. Tong, D.H. Lee, J.K. Jeong, R. Choi, High performance solution processed zirconium oxide gate dielectric appropriate for low temperature device application. Thin Solid Films 589, 90 (2015)

    ADS  Google Scholar 

  2. T.F. Zhang, X.G. Tang, Q.X. Liu, Y.P. Jiang, L.L. Jiang, L. Luo, Optical and dielectric properties of PbZrO3 thin films prepared by a sol–gel process for energy storage application. Mater. Des. 90, 410 (2016)

    Google Scholar 

  3. M. Jarvid, A. Johansson, R. Kroon, J.M. Bjuggren, H. Wutzel, V. Englund, S. Gubanski, M.R. Andersson, C. Muller, A new application area for fullerenes: voltage stabilizers for power cable insulation. Adv. Mater. 27, 897 (2015)

    Google Scholar 

  4. N.A. Khan, M. Mumtaz, A.A. Khurram, Frequency dependent dielectric properties of Cu0.5Tl0.5Ba2Ca2Cu3−yZnyO10−δ (y = 0, 1.0, 1.5, 2.0, 2.5) superconductors. J. Appl. Phys. 104, 033916 (2008)

    ADS  Google Scholar 

  5. P. Ben-Ishai, E. Sader, Y. Feldman, I. Felner, M. Weger, Dielectric properties of Na0.7CoO2 and of the superconducting Na0.3CoO2·1.3 H2O. J. Supercond. 18, 455 (2005)

    ADS  Google Scholar 

  6. C.M. Rey, H. Mathias, L.R. Testardi, S. Skirius, High dielectric constant and nonlinear electric response in nonmetallic YBa2Cu3O6+δ. Phys. Rev. B 45, 10639 (1992)

    ADS  Google Scholar 

  7. L.L. Hench, J.K. West, Principles of Electronic Ceramics, 1st edn. (Wiley, New York, 1990)

    Google Scholar 

  8. L. Li, C. Richter, S. Paetel, T. Kopp, J. Mannhart, R.C. Ashoori, Very large capacitance enhancement in two-dimensional electron system. Science 332, 825 (2011)

    ADS  Google Scholar 

  9. H. Ihara, How to achieve the best performance superconductor based on Cu-1234. Physica C 364–365, 289 (2001)

    ADS  Google Scholar 

  10. X. Xu, Z. Jiao, M. Fu, L. Feng, K. Xu, R. Zuo, X. Chen, Dielectric studies in a layered Ba based Bi-2222 cuprate Bi2Ba2Nd1.6Ce0.4Cu2O10+δ. Physica C 417, 166 (2005)

    ADS  Google Scholar 

  11. S. Cavdar, H. Koralay, N. Tugluoglu, A. Gunen, Frequency-dependent dielectric characteristics of Tl–Ba–Ca–Cu–O bulk superconductor. Supercond. Sci. Technol. 18, 1204 (2005)

    ADS  Google Scholar 

  12. R.K. Nkum, M.O. Gyekye, F. Boakye, Normal-state dielectric and transport properties of in-doped Bi–Pb–Sr–Ca–Cu–O. Solid State Commun. 122, 569 (2002)

    ADS  Google Scholar 

  13. N.H. Mohammad, Effect of MgO nano-oxide additions on the superconductivity and dielectric properties of Cu0.25Tl0.75Ba2Ca3Cu4O12−δ superconducting phase. J. Supercond. Nov. Magn. 25, 45 (2012)

    Google Scholar 

  14. J.R. Macdonald, Impedance Spectroscopy, Emphasizing Solid Materials and Systems (Wiley, New York, 1987)

    Google Scholar 

  15. W. Hao, J. Zhang, Y. Tan, W. Su, Giant dielectric-permittivity phenomena of compositionally and structurally CaCu3Ti4O12-like oxide ceramics. J. Am. Ceram. Soc. 92, 2937 (2009)

    Google Scholar 

  16. D. Szwagierczak, Dielectric behavior of Bi2/3Cu3Ti4O12 ceramic and thick films. J. Electroceram. 23, 56 (2009)

    Google Scholar 

  17. L. Singh, U.S. Rai, K.D. Mandal, N.B. Singh, Progress in the growth of CaCu3Ti4O12 and related functional dielectric perovskites. Prog. Cryst. Growth Charact. Mater. 60, 15 (2014)

    Google Scholar 

  18. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12. J. Solid State Chem. 151, 323 (2000)

    ADS  Google Scholar 

  19. A. Bagum, M.B. Hossen, F.U.Z. Chowdhury, Complex impedance and electric modulus studies of Al substituted Co0.4Cu0.2Zn0.4AlxFe2−xO4 ferrites prepared by auto combustion technique. J. Ferroelectr. 494, 19 (2016)

    Google Scholar 

  20. S.A. Nedilko, I.V. Fesych, O.G. Dzyazko, A.S. Bulachok, S.O. Solopan, T.O. Plutenko, Synthesis of barium cuprate by secondary induction heating and its electrical properties. Powder Metall. Met. Ceram. 55, 347 (2016)

    Google Scholar 

  21. J. Bashir, R. Shaheen, Structural and complex AC impedance spectroscopic studies of A2CoNbO6 (A = Sr, Ba) ordered double perovskites. Solid State Sci. 13, 993 (2011)

    ADS  Google Scholar 

  22. P. Liang, Z. Yang, X. Chao, Improved dielectric properties and grain boundary response in neodymium-doped Y2/3Cu3Ti4O12 ceramics. J. Alloys Compd. 678, 273 (2016)

    Google Scholar 

  23. B. Behera, P. Nayak, R.N.P. Choudhary, Structural and impedance properties of KBa2V5O15 ceramics. Mater. Res. Bull. 43, 401 (2008)

    Google Scholar 

  24. A.P. Sakhya, A. Dutta, T.P. Sinha, Dielectric and impedance spectroscopic studies of neodymium gallate. Physica B 488, 1 (2016)

    ADS  Google Scholar 

  25. S. Thakur, R. Rai, I. Bdikin, M.A. Valentec, Impedance and modulus spectroscopy characterization of Tb modified Bi0.8A0.1Pb0.1Fe0.9Ti0.1O3 ceramics. Mater. Res. 19, 1 (2016)

    Google Scholar 

  26. F. Tian, Y. Ohki, Electric modulus powerful tool for analyzing dielectric behavior. IEEE Trans. Dielectr. Electr. Insul. 21, 929 (2014)

    Google Scholar 

  27. B.H. Venkataraman, K.B.R. Varma, Microstructural, dielectric, impedance and electric modulus studies on vanadium-doped and pure strontium bismuth niobate (SrBi2Nb2O9) ceramics. J. Mater. Sci. Mater. Electron. 16, 335 (2005)

    Google Scholar 

  28. A.R. West, M.A. Verges, Impedance and modulus spectroscopy of ZnO varistors. J. Electroceram. 1, 125 (1997)

    Google Scholar 

  29. A.M. Nawar, H.M. Abd El-Khalek, M.M. El-Nahass, Dielectric and electric modulus studies on Ni(II) tetra-phenyl porphyrin thin films. Org. Opto-Electr. 1, 25 (2015)

    Google Scholar 

  30. A.K. Roy, K. Prasad, A. Prasad, Piezoelectric, impedance, electric modulus and AC conductivity studies on (Bi0.5Na0.5)0.95Ba0.05TiO3 ceramics. Proc. Appl. Ceram. 7, 81 (2013)

    Google Scholar 

  31. M.B. Hossen, A.K.M.A. Hossain, Complex impedance and electric modulus studies of magnetic ceramic Ni0.27Cu0.10Zn0.63Fe2O4. J. Adv. Ceram. 4, 217 (2015)

    Google Scholar 

  32. N. Murali, S.J. Margarette, V.K. Rao, V. Veeraiah, Structural, impedance, dielectric and modulus analysis of LiNi1−xy−0.02Mg0.02CoxZnyO2 cathode materials for lithium-ion batteries. J. Sci. Adv. Mater. Dev. 2, 233 (2017)

    Google Scholar 

  33. P.S. Sahoo, A. Panigrahi, S.K. Patri, R.N.P. Choudhary, Impedance and modulus spectroscopy studies of Ba4SrSmTi3V7O30 ceramics. Mater. Sci. Pol. 28, 763 (2010)

    Google Scholar 

  34. N. Padmamalini, K. Ambujam, Impedance and modulus spectroscopy of ZrO2–TiO2–V2O5 nanocomposites. Karbala Int. J. Mod. Sci. 2, 271 (2016)

    Google Scholar 

  35. R. Kundu, D. Roy, S. Bhattacharya, Microstructure, electrical conductivity and modulus spectra of CdI2 doped nanocomposite-electrolytes. Physica B 507, 107 (2017)

    ADS  Google Scholar 

  36. Y. Suresh, S. Annapurna, A.K. Singh, G. Bhikshamaiah, Green synthesis and characterization of tea decoction stabilized copper nanoparticles. Int. J. Innov. Res. Sci. Eng. Technol. 3, 11265 (2014)

    Google Scholar 

  37. L. Ali, M. Mumtaz, I. Ali, M. Waqee-ur-Rehman, A. Jabbar, Metallic Cu nanoparticles added to Cu0.5Tl0.5Ba2Ca2Cu3O10−δ superconductor. J. Supercond. Nov. Magn. 31, 561 (2018)

    Google Scholar 

  38. K.C. Kao, Dielectric Phenomena in Solids, 1st edn. (Elsevier Academic Press, Amsterdam, 2004)

    Google Scholar 

  39. H.M. El-Mallah, AC-electrical conductivity and dielectric properties of perovskite (Pb, Ca)TiO3 ceramic. Acta Phys. Pol. A 122, 174 (2012)

    Google Scholar 

  40. K.W. Wagner, Theory of imperfect dielectrics. Ann. Phys. 345, 817 (1913)

    Google Scholar 

  41. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121 (1951)

    ADS  Google Scholar 

  42. W. Cao, R. Gerhardt, Calculation of various relaxation times and conductivity for a single dielectric relaxation process. Solid State Ion. 42, 213 (1990)

    Google Scholar 

  43. B. Tareev, Physics of Dielectric Material (Mir Publisher, Moscow, 1975)

    Google Scholar 

  44. T.G. Abdel-Malak, M.E. Kassem, N.S. Aly, S.M. Kalil, AC conductivity of cobalt phthalocyanine. Acta Phys. Pol. A 81, 675 (1992)

    Google Scholar 

  45. R. Singh, R.P. Tandon, V.S. Panwar, S. Chandra, Low frequency ac conduction in lightly doped polypyrrole films. J. Appl. Phys. 69, 2504 (1991)

    ADS  Google Scholar 

  46. H.M. Ragab, Studies on the thermal and electrical properties of polyethylene oxide/polyvinyl alcohol blend by incorporating of cesium chloride. Res. Phys. 7, 2057 (2017)

    Google Scholar 

  47. J. Hou, R. Vaish, Y. Qu, D. Krsmanovic, K.B.R. Varma, R.V. Kumar, Dielectric relaxation and electrical conductivity in Bi5NbO10 oxygen ion conductors prepared by a modified sol–gel process. J. Power Sources 195, 2613 (2010)

    ADS  Google Scholar 

  48. J.R. Macdonald, L.D. Potter Jr., A flexible procedure for analyzing impedance spectroscopy results: description and illustrations. Solid State Ion. 24, 61 (1987)

    Google Scholar 

  49. M. Kaiser, Electrical conductivity and complex electric modulus of titanium doped nickel–zinc ferrites. Physica B 407, 606 (2012)

    ADS  Google Scholar 

  50. N.G. Mccrum, B.E. Read, G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Wiley, New York, 1967)

    Google Scholar 

  51. C.T. Moynihan, Analysis of electrical relaxation in glasses and melts with large concentrations of mobile ions. J. Non-Cryst. Solids 172–174, 1395 (1994)

    ADS  Google Scholar 

  52. J. Liu, C.-G. Duan, W.-G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Large dielectric constant and Maxwell–Wagner relaxation in Bi2∕3Cu3Ti4O12. Phys. Rev. B 70, 144106 (2004)

    ADS  Google Scholar 

  53. H. Rahmouni, M. Smari, B. Cherif, E. Dhahri, K. Khirouni, Conduction mechanism, impedance spectroscopic investigation and dielectric behavior of La0.5Ca0.5−xAgxMnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2). Dalton Trans. 44, 10457 (2015)

    Google Scholar 

  54. S. Nasri, A.L.B. Hafsia, M. Tabllout, M. Megdiche, Complex impedance, dielectric properties and electrical conduction mechanism of La0.5Ba0.5FeO3−δ perovskite oxides. RSC Adv. 6, 76659 (2016)

    Google Scholar 

  55. K. Lily, K. Prasad, R.N.P. Choudhary, Impedance spectroscopy of (Na0.5Bi0.5)(Zr0.25Ti0.75)O3 lead free ceramic. J. Alloys Compd. 453, 325 (2008)

    Google Scholar 

  56. I. Ahmad, M.J. Akhtar, M. Younas, M. Saddique, M.M. Hasan, Small polaronic hole hopping mechanism and Maxwell–Wagner relaxation in NdFeO3. J. Appl. Phys. 112, 074105 (2012)

    ADS  Google Scholar 

  57. K. Prasad, A. Kumar, S.N. Choudhary, R.N.P. Choudhary, Relaxor behavior of Pb[(Mg3/4Co1/4)1/3Nb2/3]O3 ceramic. Solid State Ion. 176, 1641 (2005)

    Google Scholar 

  58. P.B. Macedo, C.T. Moynihan, R. Bose, The role of ionic diffusion in polarisation in vitreous ionic conductors. Phys. Chem. Glasses 13, 171 (1972)

    Google Scholar 

  59. R. Gerhardt, Impedance and dielectric spectroscopy revisited: distinguishing localized relaxation from long-range conductivity. J. Phys. Chem. Solids 55, 1491 (1994)

    ADS  Google Scholar 

  60. J. Liu, C.-G. Duan, W.-G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Dielectric permittivity and electric modulus in Bi2Ti4O11. J. Chem. Phys. 119, 2812 (2003)

    ADS  Google Scholar 

  61. M. Naveed, M. Mumtaz, R. Khan, A.A. Khan, M. Nasir Khan, Conduction mechanism and impedance spectroscopy of (MnFe2O4)x/CuTl-1223 nanoparticle–superconductor composites. J. Alloys Compd. 712, 696 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mumtaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.A., Mumtaz, M., Ali, L. et al. AC Conduction Mechanism in (Cu)x/(CuTl)-1223 Nanoparticles–Superconductor Composites. J Low Temp Phys 199, 1268–1298 (2020). https://doi.org/10.1007/s10909-020-02417-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02417-2

Keywords

Navigation