Skip to main content
Log in

Particle Response of Antenna-Coupled TES Arrays: Results from SPIDER and the Laboratory

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Future mm-wave and sub-mm space missions will employ large arrays of multiplexed transition-edge-sensor (TES) bolometers. Such instruments must contend with the high flux of cosmic rays beyond our atmosphere that induce ‘glitches’ in bolometer data, which posed a challenge to data analysis from the Planck bolometers. Future instruments will face the additional challenges of shared substrate wafers and multiplexed readout wiring. In this work, we explore the susceptibility of modern TES arrays to the cosmic ray environment of space using two data sets: the 2015 long-duration balloon flight of the SPIDER cosmic microwave background polarimeter, and a laboratory exposure of SPIDER flight hardware to radioactive sources. We find manageable glitch rates and short glitch durations, leading to minimal effect on SPIDER analysis. We constrain energy propagation within the substrate through a study of multi-detector coincidences and give a preliminary look at pulse shapes in laboratory data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M.H. Abitbol, Z. Ahmed, D. Barron et al., arXiv:1706.02464 (2017)

  2. K.D. Irwin, & G.C. Hilton, Transition-edge sensors, in Cryogenic Particle Detection, Topics in Applied Physics, vol. 99, ed. by C. Enss (Springer, 2005)

  3. J.W. Britton, J.P. Nibarger, K.W. Yoon et al., Proc. SPIE Int. Soc. Opt. Eng. 7741, 21 (2010). https://doi.org/10.1117/12.857885

    Article  Google Scholar 

  4. K. Arnold et al., Proc. SPIE Int. Soc. Opt. Eng. 8452, 84521D (2012). https://doi.org/10.1117/12.927057

    Article  Google Scholar 

  5. P.A.R. Ade, R.W. Aikin, M. Amiri et al., Astrophys. J. 812, 17 (2015). https://doi.org/10.1088/0004-637X/812/2/176

    Article  Google Scholar 

  6. M. Hazumi, P.A.R. Ade, Y. Akiba et al., J. Low Temp. Phys. 194(5), 443 (2019)

    Article  ADS  Google Scholar 

  7. P. Roelfsema, H. Shibai, L. Armus et al., Publ. Astron. Soc. Aust. 35, E030 (2018). https://doi.org/10.1017/pasa.2018.15

    Article  ADS  Google Scholar 

  8. The OST mission concept study team, arXiv:1809.09702 (2018)

  9. S. Hanany, M. Alvarez, E. Artis et al., arXiv:1902.10541 (2019)

  10. P.A.R. Ade, N. Aghanim et al., Astron. Astrophy. 536, A1 (2011)

    Article  Google Scholar 

  11. Planck Collaboration, Y. Akrami, F. Arroja et al., arXiv:1807.06205 (2018)

  12. P.A.R. Ade, N. Aghanim, M. Arnaud et al., Astron. Astrophys. 571, A10 (2014). https://doi.org/10.1051/0004-6361/201321577

    Article  Google Scholar 

  13. A. Catalano et al., Astron. Astrophys. 569, A88 (2014). https://doi.org/10.1051/0004-6361/201423868

    Article  Google Scholar 

  14. A. Catalano, P. Ade, Y. Atik et al., J. Low Temp. Phys. 176(5), 773–786 (2014). https://doi.org/10.1007/s10909-014-1116-6

    Article  ADS  Google Scholar 

  15. J.P. Filippini, P.A.R. Ade, M. Amiri et al., Proc. SPIE (2010). https://doi.org/10.1117/12.857720

    Article  Google Scholar 

  16. A.A. Fraisse, P.A.R. Ade, M. Amiri et al., J. Cosmol. Astropart. Phys. 4, 047 (2013)

    Article  ADS  Google Scholar 

  17. J.M. Nagy, P.A.R. Ade, M. Amiri et al., Astrophys. J 844, 151 (2017). https://doi.org/10.3847/1538-4357/aa7cfd

    Article  ADS  Google Scholar 

  18. P.A.J. de Korte, J. Beyer, S. Deiker et al., Rev. Sci. Instrum. 74, 3807 (2003)

    Article  ADS  Google Scholar 

  19. G.M. Stiehl, H.M. Cho, G.C. Hilton et al., IEEE Trans. Appl. Supercond. 21, 298 (2011)

    Article  ADS  Google Scholar 

  20. E.S. Battistelli, M. Amiri, B. Burger et al., J. Low Temp. Phys. 151, 908 (2008)

    Article  ADS  Google Scholar 

  21. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis et al., Nucl. Inst. Method A 506(3), 250 (2003)

    Article  ADS  Google Scholar 

  22. J. Allison, K. Amako, J. Apostolakis, H. Araujo et al., IEEE Trans. Nucl. Sci. 53(1), 270 (2006)

    Article  ADS  Google Scholar 

  23. J. Allison, K. Amako, J. Apostolakis, P. Arce et al., Nucl. Inst. Method A 835, 186 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by NASA’s Strategic Astrophysics Technology program (14-SAT14-0009, 16-SAT16-0002). SPIDER is supported by in the USA by NASA (NNX07AL64G, NNX12AE95G, NNX17AC55G) and NSF (PLR-1043515); in Canada by NSERC and CSA; as well as by the Research Council of Norway, the Swedish Research Council, and the Packard Foundation. Logistical support in Antarctica is supported by the NSF through the US Antarctic Program. The collaboration is grateful to the British Antarctic Survey, particularly Sam Burrell, for invaluable assistance with data and payload recovery after the 2015 flight.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Osherson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osherson, B., Filippini, J.P., Fu, J. et al. Particle Response of Antenna-Coupled TES Arrays: Results from SPIDER and the Laboratory. J Low Temp Phys 199, 1127–1136 (2020). https://doi.org/10.1007/s10909-020-02415-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02415-4

Keywords

Navigation