Skip to main content
Log in

Performance Parameters Prediction for FPFD Miniature Stirling Cryocooler Considering Polytropic Processes

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The performance of an actual free piston free displacer (FPFD) Stirling miniature cryocooler has been simulated based on the parameters affecting the performance of the cryocooler. The processes of compression and expansion in the cryocooler have been assumed to be polytropic with variable ratio of specific heats for the working fluid, i.e., helium. The effect of design parameters like piston spring stiffness, displacer spring stiffness, mass of the piston, displacer mass and frequency of operation on the cooling power of the cryocooler has been calculated. The parameters thus obtained with polytropic processes have been compared with the parameters obtained by assuming the compression and expansion processes to be isothermal. The amplitude of the piston and the displacer is not constant in the case of free piston free displacer cryocooler with linear motors. Linear motor drives have been used for eliminating the side forces on the cylinder walls and wear and tear of the reciprocating parts of the cryocoolers giving them a very long life. A computer program named CRYOJIN which was developed for the isothermal case has been modified for analyzing the real-time performance of the cryocooler for polytropic processes. The physical dimensions of Philips 1 W FPFD cryocooler have been taken for study and comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A :

Area (m2)

A n a n :

Constants in the Fourier series of the current (A)

Bc :

Motor Constant (Wb Ω−1 m−1)

Bg :

Flux density in the gap (T)

B n, b n :

Constants in the Fourier series of the current (A)

Bs :

Motor constant (Wb2 m)

Bu :

Motor constant (Wb2 m Ω−1)

cc :

Mutual inductive coupling coefficient

C p :

Specific heat of the material (W m−1 K−1)

C m :

Stiffness constant (N m−1)

D :

Diameter (m)

E :

Impressed voltage (V)

E m :

Induced Voltage (V)

E 0 :

Amplitude of the Impressed voltage (V)

E s :

Amplitude of the Induced voltage (V)

f :

Frequency (Hz)

f re :

Reynold’s friction factor

F :

Flow loss coefficient (Ns m-3)

h :

Height (m)

i :

Current (A)

K :

Spring Stiffness (N m−1)

l :

Wire length (m)

L :

Effective coil inductance (H)

L R :

Length of the regenerator

M :

Mass (Kg)

MAX :

Constant

P ci :

Ideal thermodynamic power input to the Stirling cryocooler (W)

P i :

Power input to the linear motor (W)

P o :

Power output from the linear motor (W)

P :

Pressure (N m-2)

P av :

Mean Pressure (Nm-2)

P r :

Prandtl number

Q eo :

Refrigeration effect (W)

Q sh :

Shuttle heat transfer (W)

R L :

Coil quality factor

R P :

Power source resistance (Ω)

R T :

Total resistance (Ω)

R w :

Wire resistance (Ω)

S 1, S 2 :

Constants

T :

Temperature (K)

t :

Time (S)

u :

Axial velocity of the gap flow

V :

Volume (m3)

X :

Amplitude of displacement (m)

Z :

Pressure position coefficient (N m-3)

α :

Thermal diffusivity (k/ρc)

β :

Piston phase angle

γ :

Kinematic viscosity

ρ :

Gas density

σ :

Solidity ratio

θ :

Phase lead of the displacer over piston

\(\phi\) :

Motor phase shift

ψ :

Complex constant

ω :

Angular velocity (rad s−1)

τ :

Temperature ratio

References

  1. G. Walker, The Stirling Alternative: Power Systems, Refrigerants and Heat Pumps (Gordon and Breach Science Pub, Yverdon, Yverdon, 1994)

    Google Scholar 

  2. K.V.V. Kumar, B.T. Kuzhiveli, Performance enhancement of miniature stirling cryocooler with a multimesh regenerator design. J. Eng. Sci. Technol. 12(6), 1514–1524 (2017)

    Google Scholar 

  3. A.S. Gaunekar, K.G. Narayankhedkar, S.L. Bapat, Dynamic and thermodynamic analysis of doubly motorized miniature Stirling cryocooler using double coil linear motors. Cryogenics 34(1), 43–50 (1994)

    Article  ADS  Google Scholar 

  4. T.K. Jindal, Effect of regenerator effectiveness on the performance of free piston free displacer stirling cryocooler. Indian J. Cryog, 33(1) (2008)

  5. Kuzhiveli et al. Design and development of miniature stirling cryocooler using ferrite magnet for 1W capacity at 80 K. Cryogenics, 17, 7–12 (1992)

  6. P.V. Natu, K.G. Narayankhedkar, Two stage stirling cycle cryocooler. Cryogenics 17, 1–6 (1992)

    Google Scholar 

  7. A.J. Organ, Thermodynamics and gas dynamics of the Stirling cycle machines (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  8. J.L. Smith, M. Romm, Thermodynamic loss at component interface in stirling cryocoolers. Proc. 27 IECEC Soc. Autom. Eng. Pausa 5, 529–532 (1992)

    Google Scholar 

  9. K.G. Narayankhedkar, Advances in Stirling cycle cryocooler. Cryogenics 17, 17–21 (1992)

    Google Scholar 

  10. M Janssen et al., Measurement and application of performance characteristics of a free piston stirling cooler, in Proceedings of the 9th International Refrigeration and Air Conditioning Conference, Purdue (2000), pp.1–8.

  11. Kuzhiveli et al., Design and development of miniature Stirling cryocooler using ferrite magnet for 1W capacity at 80 K, Cryogenics, 17, 7–12 (2002)

  12. Y.T. Jindal, Models of stirling cryocoolers, in Proc. 25th National Conference on Cryogenics and Its Frontier Applications, Kolkata, India, pp. 159–168 (2004)

  13. K. G. Narayankhedkar, Advances in stirling type pulse tube cryocoolers. Indian J. Cryog. 30(1) (2005)

  14. A.R. Padmanabhan, C.S. Gurudath, P.P. Gupta, D.R. Bhandari, Improved cryocooler for onz-board applications. Indian J. Cryog. 32(1-4), 64–68 (2007)

    Google Scholar 

  15. B.S. Gawali, S.B. Khare, Theoretical prediction and experimental investigation of counter flow pulse tube refrigerator. Indian J. Cryog. 32(1-4), 49–53 (2007)

    Google Scholar 

  16. J.L. Yang, X.F. Hou et al., The effect of inertance tube in 300 Hz pulse tube cryocooler. J. Eng. Thermophys. (Chinese) 29(7), 1099–1102 (2008)

    Google Scholar 

  17. T.K Jindal, Effect of regenerator effectiveness on the performance of free piston free displacer stirling cryocooler. Indian J. Cryog. 33(1) (2008)

  18. R. Radebaugh, Cryocoolers: the state of the art and recent developments. J Phys. Condens. Matter. 21(16), 164219 (2009)

    Article  ADS  Google Scholar 

  19. M.D. Atrey, S.L. Bapat, K.G. Narayankhedkar, Cyclic simulation of Stirling cryocoolers. Cryogenics 30(4), 341–347 (1990)

    Article  ADS  Google Scholar 

  20. S.J. Park, Y.J. Hong, H.B. Kim, D.Y. Koh, J.H. Kim, B.K. Yu, K.B. Lee, The effect of operating parameters in the Stirling cryocooler. Cryogenics 42(6–7), 419–425 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar Saluja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sham, R., Jindal, T.K., Saluja, R.K. et al. Performance Parameters Prediction for FPFD Miniature Stirling Cryocooler Considering Polytropic Processes. J Low Temp Phys 199, 1211–1229 (2020). https://doi.org/10.1007/s10909-020-02413-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02413-6

Keywords

Navigation