Skip to main content

Advertisement

Log in

Metallic Magnetic Calorimeters for High-Accuracy Nuclear Decay Data

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Metallic magnetic calorimeters (MMCs) combine the excellent energy resolution of cryogenic gamma ray detectors with a very small nonlinearity and a reproducible response, owing to their magnetization-based sensor and their metallic heat flow path. These attributes make MMCs well suited for photon and particle spectroscopy applications requiring the highest accuracy. We are developing high-resolution MMC gamma ray detectors with the goal of improving the quality of key nuclear decay data for nuclear safeguards and fundamental science. Our exploratory “integrated” (SQUIDs and sensors on the same chip) 14-pixel MMC designs recently demonstrated energy resolution of 37.5 eV at 60 keV. Here, we describe the design and optimization for a new generation of MMC detectors using both “integrated” and “split” designs (SQUIDs and sensors on separate chips). The new designs are expected to have an energy resolution < 25 eV (< 5 eV) for MMCs optimized for energies up to 100 keV (10 keV) and have up to 32 pixels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. S. Kempf, A. Fleischmann, L. Gastaldo, C. Enss, J. Low Temp. Phys. 193, 365 (2018). https://doi.org/10.1007/s10909-018-1891-6

    Article  ADS  Google Scholar 

  2. A. Fleischmann, L. Gastaldo, S. Kempf, A. Kirsch, A. Pabinger, C. Pies, J.-P. Porst, P. Ranitzsch, S. Schäfer, F.V. Seggern, T. Wolf, C. Enss, G.M. Seidel, AIP Conf. Proc. 1185, 571 (2009). https://doi.org/10.1063/1.3292407

    Article  ADS  Google Scholar 

  3. A. Fleischmann, C. Enss, G.M. Seidel, Metallic magnetic calorimeters, in Cryogenic Particle Detection, ed. by C. Enss (Springer, Berlin, 2005), pp. 151–216

    Google Scholar 

  4. C.R. Bates, C. Pies, S. Kempf, D. Hengstler, A. Fleischmann, L. Gastaldo, C. Enss, S. Friedrich, Appl. Phys. Lett. 109, 023513 (2016). https://doi.org/10.1063/1.4958699

    Article  ADS  Google Scholar 

  5. G.-B. Kim, R. Hummatov, S. Kempf, C. Flynn, R. Cantor, A. Fleischmann, S.T.P. Boyd, C. Enss, S. Friedrich, J. Radioanal. Nucl. Chem. 318, 803 (2018). https://doi.org/10.1007/s10967-018-6182-9

    Article  Google Scholar 

  6. S.T.P. Boyd, R. Hummatov, G.-B. Kim, J.A. Hall, R. Cantor, S. Friedrich, J. Low Temp. Phys. 193, 435 (2018). https://doi.org/10.1007/s10909-018-2017-x

    Article  ADS  Google Scholar 

  7. R. Hummatov, J.A. Hall, G.-B. Kim, S. Friedrich, R. Cantor, S.T.P. Boyd, J. Low Temp. Phys. 193, 752 (2018). https://doi.org/10.1007/s10909-018-1946-8

    Article  ADS  Google Scholar 

  8. R. Hummatov, L.N. Le, J.A. Hall, S. Friedrich, R.A. Cantor, S.T.P. Boyd, IEEE Trans. Appl. Supercond. 27, 2200205 (2017). https://doi.org/10.1007/s10909-018-1946-8

    Article  Google Scholar 

  9. The Heidelberg MMC group announced a resolution of 9 eV at 60 keV with their maXs-30 device at this conference. To the best of our knowledge MMC detectors now hold the world record for energy resolution in gamma spectroscopy (paper in preparation)

  10. Yoon et al., IEEE Trans. Appl. Supercond. 29, 2300206 (2019). https://doi.org/10.1109/tasc.2019.2908143Although that value of σ was obtained specifically for Au: Er PM deposited onto an MMC readout coil, we anticipate it will remain accurate within about a factor of two for the Au: Pd shunt resistors of the SQUID and for a gold coating on the bottom of the integrated MMC chip

  11. T. de Haan, A. Suzuki, S.T.P. Boyd, R.H. Cantor, A. Coerver, M.A. Dobbs, R. Hennings-Yeomans, W.L. Holzapfel, A.T. Lee, G. Noble, J. Low Temp. Phys. This Special Issue LTD18 (2020)

  12. Magnicon GmbH, Barkhausenweg 11, 22339 Hamburg, Germany. http://www.magnicon.com/squid-electronics/. Accessed 18 Feb 2020

  13. STAR Cryoelectronics LLC, 25-A Bisbee Ct., Santa Fe, NM, 87508. https://starcryo.com/pcsquid/. Accessed 18 Feb 2020

Download references

Acknowledgements

This work was funded by the U.S. Department of Energy NA-22 under Grant LL16-MagMicro-PD2La. It was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Calculations were performed at the UNM Center for Advanced Research Computing (CARC). We are grateful to the CARC technical staff for their ongoing support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. P. Boyd.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyd, S.T.P., Kim, GB., Hall, J.A. et al. Metallic Magnetic Calorimeters for High-Accuracy Nuclear Decay Data. J Low Temp Phys 199, 681–687 (2020). https://doi.org/10.1007/s10909-020-02406-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02406-5

Keywords

Navigation