Skip to main content
Log in

Effect of Stray Impedance in Frequency-Division Multiplexed Readout of TES Sensors in POLARBEAR-2b

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

POLARBEAR-2b (PB-2b) is the second of three cryogenic receivers of the Simons Array cosmic microwave background polarization experiment. PB-2b contains over 7500 transition-edge sensor (TES) bolometers cooled to 250 mK and read out using digital frequency-division multiplexing (DfMux). Stray impedance in the DfMux circuit obscures TES characterization and affects TES dynamic behavior. In order to accurately characterize TESs, it is necessary to account for stray impedance in the bias circuit. We define a stray impedance model, and we describe the technique used to measure model parameters in situ and to remove their effects on TES characterization. We use the same model to predict TES dynamic behavior and show good agreement between data and the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P.A.R. Ade et al., Phys. Rev. Lett. 112, 131302 (2014). https://doi.org/10.1103/PhysRevLett.112.131302

    Article  ADS  Google Scholar 

  2. P.A.R. Ade et al., Phys. Rev. Lett. 113, 021301 (2014). https://doi.org/10.1103/PhysRevLett.113.021301

    Article  ADS  Google Scholar 

  3. P.A.R. Ade et al., Ap. J. 794, 171 (2014). https://doi.org/10.1088/0004-637x/794/2/171

    Article  ADS  Google Scholar 

  4. P.A.R. Ade et al., Phys. Rev. D 92, 123509 (2015). https://doi.org/10.1103/PhysRevD.92.123509

    Article  ADS  Google Scholar 

  5. P.A.R. Ade et al., Ap. J. 848, 121 (2017). https://doi.org/10.3847/1538-4357/aa8e9f

    Article  ADS  Google Scholar 

  6. K. Arnold et al., Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V, vol. 7741 (SPIE, Bellingham, 2010). https://doi.org/10.1117/12.858314

    Book  Google Scholar 

  7. Z.D. Kermish et al., Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI, vol. 8452 (SPIE, Bellingham, 2012). https://doi.org/10.1117/12.926354

    Book  Google Scholar 

  8. A. Suzuki et al., J. Low Temp. Phys. 184, 805 (2016). https://doi.org/10.1007/s10909-015-1425-4

    Article  ADS  Google Scholar 

  9. N. Stebor et al., Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, vol. 9914 (SPIE, Bellingham, 2016). https://doi.org/10.1117/12.2233103

    Book  Google Scholar 

  10. M. Dobbs et al., Rev. Sci. Instrum. 83, 073113 (2012). https://doi.org/10.1063/1.4737629

    Article  ADS  Google Scholar 

  11. T. de Haan et al., Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI, vol. 8452 (SPIE, Bellingham, 2012). https://doi.org/10.1117/12.925658

    Book  Google Scholar 

  12. A.N. Bender et al., Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII (SPIE, Bellingham, 2014). https://doi.org/10.1117/12.2054949

    Book  Google Scholar 

  13. J. Montgomery, Masters Thesis, McGill University, 2015

  14. K. Hattori et al., J. Low Temp. Phys. 184, 512 (2016). https://doi.org/10.1007/s10909-015-1448-x

    Article  ADS  Google Scholar 

  15. A. Bender et al., J. Low Temp. Phys. (2020). https://doi.org/10.1007/S10909-019-02280-W

    Article  Google Scholar 

  16. K. Rotermund et al., J. Low Temp. Phys. 184, 486 (2016). https://doi.org/10.1007/s10909-016-1554-4

    Article  ADS  Google Scholar 

  17. J.S. Avva et al., J. Low Temp. Phys. 193, 547 (2018). https://doi.org/10.1007/s10909-018-1965-5

    Article  ADS  Google Scholar 

  18. T. Elleflot et al., J. Low Temp. Phys. 193, 1094 (2018). https://doi.org/10.1007/s10909-018-2058-1

    Article  ADS  Google Scholar 

  19. D. Dutcher et al., Millimeter, submillimeter, and far-infrared detectors and instrumentation for astronomy IX, vol. 10708 (SPIE, Bellingham, 2018). https://doi.org/10.1117/12.2312451

    Book  Google Scholar 

  20. A. Anderson et al., J. Low Temp. Phys. (2020). https://doi.org/10.1007/S10909-019-02259-7

    Article  Google Scholar 

  21. K.D. Irwin et al., Cryog. Part. Detect. 99, 63 (2005)

    ADS  Google Scholar 

Download references

Acknowledgements

The Simons Array is supported by the Simons Foundation, the National Science Foundation (AST-1440338), the Moore Foundation, and the Heising-Simons Foundation. The authors acknowledge support from the Axe Center for Experimental Cosmology and the John Templeton Foundation. This work was supported by JSPS KAKENHI Grant Number JP15H05891.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Elleflot.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elleflot, T., Arnold, K., Barron, D. et al. Effect of Stray Impedance in Frequency-Division Multiplexed Readout of TES Sensors in POLARBEAR-2b. J Low Temp Phys 199, 840–848 (2020). https://doi.org/10.1007/s10909-020-02387-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02387-5

Keywords

Navigation