Skip to main content
Log in

Performance of a Low-Parasitic Frequency-Domain Multiplexing Readout

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Frequency-domain multiplexing is a readout technique for transition-edge sensor bolometer arrays used on modern cosmic microwave background experiments, including the SPT-3G receiver. Here, we present design details and performance measurements for a low-parasitic frequency-domain multiplexing readout. Reducing the parasitic impedance of the connections between cryogenic components provides a path to improve both the crosstalk and noise performance of the readout. Reduced crosstalk will in turn allow higher-multiplexing factors. We have demonstrated a factor of two improvement in parasitic resistance compared to SPT-3G hardware. Reduced parasitics also permits operation of lower-resistance bolometers optimized for improved readout noise performance. We demonstrate that a module in the prototype system has comparable readout noise performance to an SPT-3G module when operated with dark TES bolometers in the laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.N. Bender et al., Proc. SPIE. 10708, 1070803 (2018). https://doi.org/10.1117/12.2312426

    Article  Google Scholar 

  2. D. Barron et al., Proc. SPIE. 9153, 915335 (2014). https://doi.org/10.1117/12.2055611

    Article  Google Scholar 

  3. B. Reichborn-Kjennerud et al., Proc. SPIE. 7741, 77411C (2010). https://doi.org/10.1117/12.857138

    Article  Google Scholar 

  4. M. Hazumi et al., J. Low Temp. Phys. 194(5–6), 443 (2019). https://doi.org/10.1007/s10909-019-02150-5

    Article  ADS  Google Scholar 

  5. K. Abazjian et al. for the CMB-S4 collaboration. arXiv:1610.02743

  6. R.A. Hijmering, R. den Hartog, M. Ridder, A.J. van der Linden, J. van der Kuur, J.R. Gao, B. Jackson, Proc. SPIE 9914, 99141C (2016). https://doi.org/10.1117/12.2231714

    Article  Google Scholar 

  7. A.N. Bender et al., Proc. SPIE 9153, 91531A (2014). https://doi.org/10.1117/12.2054949

    Article  Google Scholar 

  8. T. de Haan, G. Smecher, M. Dobbs, Proc SPIE. 8452, 84520E (2012). https://doi.org/10.1117/12.925658

    Article  Google Scholar 

  9. A.N. Bender, et al., J. Low Temp. Phys. (2019). https://doi.org/10.1007/s10909-019-02280-w

    Article  Google Scholar 

  10. J.S. Avva et al., J. Low Temp. Phys. 193(3–4), 547 (2018). https://doi.org/10.1007/s10909-018-1965-5

    Article  ADS  Google Scholar 

  11. M.A. Dobbs et al., Rev. Sci. Instrum. 83(7), 073113 (2012). https://doi.org/10.1063/1.4737629

    Article  ADS  Google Scholar 

  12. A.N. Bender et al., Proc. SPIE 9914, 99141D (2016). https://doi.org/10.1117/12.2232146

    Article  Google Scholar 

  13. K.D. Irwin, G.C. Hilton, Transition-Edge Sens. (2005). https://doi.org/10.1007/10933596_3

    Article  Google Scholar 

  14. J. Clarke, A.I. Braginski, The SQUID Handbook (Wiley, Hoboken, 2004)

    Book  Google Scholar 

  15. Metglas, Inc., Subsidiary of Hitachi Metals America, ltd, Conway, SC, http://www.metglas.com

  16. Amuneal Manufacturing Corp., Philadelphia, PA, http://www.amuneal.com

  17. A.E. Lowitz, A.N. Bender, M.A. Dobbs, A.J. Gilbert, Proc. SPIE 10708, 107081D (2018). https://doi.org/10.1117/12.2311984

    Article  Google Scholar 

  18. Chase Research Cryogenics, Sheffield, UK, http://www.chasecryogenics.com

  19. W. Everett et al., J. Low Temp. Phys. 193(5–6), 1085 (2018). https://doi.org/10.1007/s10909-018-2057-2

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Work at the University of Chicago is supported by the National Science Foundation through Grant PLR-1248097. Work at Argonne National Laboratory is supported by UChicago Argonne LLC, Operator of Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy Office of Science Laboratory, is operated under Contract No. DE-AC02-06CH11357. The McGill authors acknowledge funding from the Natural Sciences and Engineering Research Council of Canada, Canadian Institute for Advanced Research, and the Fonds de recherche du Québec Nature et technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Lowitz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lowitz, A.E., Bender, A.N., Barry, P. et al. Performance of a Low-Parasitic Frequency-Domain Multiplexing Readout. J Low Temp Phys 199, 192–199 (2020). https://doi.org/10.1007/s10909-020-02384-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02384-8

Keywords

Navigation