Skip to main content
Log in

Transformer-Coupled TES Frequency Domain Readout Prototype

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Frequency-domain multiplexing (fMUX) is a mature readout scheme for transition edge sensor (TES) detectors in the millimetre and sub-millimetre bands. It is implemented at MHz carrier frequencies for the South Pole Telescope, POLARBEAR, and Simons Array and is planned for deployment on the LiteBIRD space polarimeter. The existing implementations couple to the detectors with low-noise, low-input-impedance superconducting quantum interference device (SQUID) transimpedance amplifiers and rely on complex arrangements to achieve sufficient linearity and dynamic range. We introduce a new cryogenic amplification scheme that couples the multiplexed TES devices to a traditional, high-linearity, high-dynamic-range, field-effect transistor amplifier using a novel high-turns-ratio, wide-band cryogenic transformer. We characterize the bandwidth, transimpedance, input impedance, and system noise of the transformer-coupled fMUX system to demonstrate that it is a promising candidate for MHz frequency-domain multiplexing without the use of SQUIDs. For the initial prototype, we demonstrate a bandwidth of 1.5–6 MHz, transimpedance of \(267 \pm 2 \,{\Omega}\), input impedance of \(0.2\,{\Omega}\), and system noise \(16 \pm 3\,{\mathrm {pA}}/\sqrt{{\mathrm {Hz}}}\). We also present an optimized design which will have amplifier noise contributions of approximately \(5 \,{\mathrm {pA}}/\sqrt{{\mathrm {Hz}}}\), comparable to the SQUID contribution in the existing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A.N. Bender, P.A.R. Ade, Z. Ahmed, A.J. Anderson, J.S. Avva, K. Aylor, P.S. Barry, R. Basu Thakur, B.A. Benson, L.S. Bleem, S. Bocquet, K. Byrum, J.E. Carlstrom, F.W. Carter, T.W. Cecil, C.L. Chang, H.-M. Cho, J.F. Cliche, T.M. Crawford, A. Cukierman, T. de Haan, E.V. Denison, J. Ding, M.A. Dobbs, S. Dodelson, D. Dutcher, W. Everett, A. Foster, J. Gallicchio, A. Gilbert, J.C. Groh, S.T. Guns, N.W. Halverson, A.H. Harke-Hosemann, N.L. Harrington, J.W. Henning, G.C. Hilton, G.P. Holder, W.L. Holzapfel, N. Huang, K.D. Irwin, O.B. Jeong, M. Jonas, A. Jones, T.S. Khaire, L. Knox, A.M. Kofman, M. Korman, D.L. Kubik, S. Kuhlmann, C.-L. Kuo, A.T. Lee, E.M. Leitch, A.E. Lowitz, S.S. Meyer, D. Michalik, J. Montgomery, A. Nadolski, T. Natoli, H. Nguyen, G.I. Noble, V. Novosad, S. Padin, Z. Pan, J. Pearson, C.M. Posada, W. Quan, S. Raghunathan, A. Rahlin, C.L. Reichardt, J.E. Ruhl, J.T. Sayre, E. Shirokoff, G. Smecher, J.A. Sobrin, A.A. Stark, K.T. Story, A. Suzuki, K.L. Thompson, C. Tucker, L.R. Vale, K. Vanderlinde, J.D. Vieira, G. Wang, N. Whitehorn, W.L.K. Wu, V. Yefremenko, K.W. Yoon, M.R. Young, Proc. SPIE 10708, IX (2018). https://doi.org/10.1117/12.2312426

    Article  Google Scholar 

  2. T. de Haan, A. Suzuki, S. T. P. Boyd, R. H. Cantor, A. Coerver, M. A. Dobbs, R. Hennings-Yeomans, W. L. Holzapfel, A. T. Lee, G. I. Noble. J. Low Temp. Phys. (2019). https://doi.org/10.1007/s10909-020-02403-8

    Article  Google Scholar 

  3. J. Clarke, A.I. Braginski, The SQUID Handbook (Wiley, Hoboken, 2006)

    Book  Google Scholar 

  4. T. de Haan, G. Smecher, M. Dobbs, Proc. SPIE 8452(VI), (2012). https://doi.org/10.1117/12.925658

  5. M. Galeazzi, J. Armstrong, J.W. Appel, D.F. Bogorin, F. Gatti, L. Parodi, M. Ribeiro-Gomes, J. Low Temp. Phys. (2008). https://doi.org/10.1007/s10909-008-9782-x

    Article  Google Scholar 

  6. L. Gottardi, J. van de Kuur, S. Bandler, M. Bruijn, P. de Korte, J.R. Gao, R. den Hartog, R.A. Hijmering, H. Hoevers, P. Koshropanah, C. Kilbourne, M.A. Lindemann, M. Parra Borderias, M. Ridder, IEEE Trans. Appl. Supercond. (2011). https://doi.org/10.1109/TASC.2010.2100090

    Article  Google Scholar 

  7. S. Vitali, Nucl. Instrum. Methods Phys. Res. 530, 3 (2004). https://doi.org/10.1016/j.nima.2004.04.214

    Article  Google Scholar 

  8. L. Parodi, F. Gatti, M.R. Gomes, R. Valle, R. Vaccarone, A. Bevilacqua, L. Ferrari, D. Bagliani, M. Galeazzi, D.F. Bogorin, J. Amstrong, J. Low Temp. Phys. (2008). https://doi.org/10.1007/s10909-008-9783-9

    Article  Google Scholar 

  9. M.A. Dobbs, M. Lueker, K.A. Aird, A.N. Bender, B.A. Benson, L.E. Bleem, J.E. Carlstrom, C.L. Chang, H.-M. Cho, J. Clarke, T.M. Crawford, A.T. Crites, D.I. Flanigan, T. de Haan, E.M. George, N.W. Halverson, W.L. Holzapfel, J.D. Hrubes, B.R. Johnson, J. Joseph, R. Keisler, J. Kennedy, Z. Kermish, T.M. Lanting, A.T. Lee, E.M. Leitch, D. Luong-Van, J.J. McMahon, J. Mehl, S.S. Meyer, T.E. Montroy, S. Padin, T. Plagge, C. Pryke, P.L. Richards, J.E. Ruhl, K.K. Schaffer, D. Schwan, E. Shirokoff, H.G. Spieler, Z. Staniszewski, A.A. Stark, K. Vanderlinde, J.D. Vieira, C. Vu, B. Westbrook, R. Williamson, Rev. Sci. Instrum. 83, 073113 (2012). https://doi.org/10.1063/1.4737629

    Article  ADS  Google Scholar 

  10. Stahl Electronics. Low noise amplifiers (300k ... 4.2k). Web. Accessed 10 July 2019

  11. K. Bandura, A.N. Bender, J.F. Cliche, T. de Haan, M.A. Dobbs, A.J. Gilbert, S. Griffin, G. Hsyu, D. Ittah, J. Mena Parra, J. Montgomery, T. Pinsonneault-Marotte, S. Siegel, G. Smecher, Q.Y. Tang, K. Vanderlinde, N. Whitehorn, J. Astron. Instrum. (2016). https://doi.org/10.1142/S2251171716410051

    Article  Google Scholar 

  12. A.N. Bender, P.A.R. Ade, A.J. Anderson, J. Avva, Z. Ahmed, K. Arnold, J.E. Austermann, R. Basu Thakur, B.A. Benson, L.E. Bleem, K. Byrum, J.E. Carlstrom, F.W. Carter, C.L. Chang, H.M. Cho, J.F. Cliche, T.M. Crawford, A. Cukierman, D.A. Czaplewski, J. Ding, R. Divan, T. de Haan, M.A. Dobbs, D. Dutcher, W. Everett, A. Gilbert, J.C. Groh, R. Guyser, N.W. Halverson, A. Harke-Hosemann, N.L. Harrington, K. Hattori, J.W. Henning, G.C. Hilton, W.L. Holzapfel, N. Huang, K.D. Irwin, O. Jeong, T. Khaire, M. Korman, D. Kubik, C.L. Kuo, A.T. Lee, E.M. Leitch, S. Lendinez, S.S. Munsrteyer, C.S. Miller, J. Montgomery, A. Nadolski, T. Natoli, H. Nguyen, V. Novosad, S. Padin, Z. Pan, J. Pearson, C.M. Posada, A. Rahlin, C.L. Reichardt, J.E. Ruhl, B.R. Saliwanchik, J.T. Sayre, J.A. Shariff, I. Shirley, E. Shirokoff, G. Smecher, J. Sobrin, L. Stan, A.A. Stark, K. Story, A. Suzuki, Q.Y. Tang, K.L. Thompson, C. Tucker, K. Vanderlinde, J.D. Vieira, G. Wang, N. Whitehorn, V. Yefremenko, K.W. Yoon, Proc. SPIE (2016). https://doi.org/10.1117/12.2232146

    Article  Google Scholar 

Download references

Acknowledgements

The McGill authors acknowledge funding from the Natural Sciences and Engineering Research Council of Canada and Canadian Institute for Advanced Research, and the hardware expertise, support, and access provided by Dr. Stefan Stahl.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rouble.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouble, M., Dobbs, M., Gilbert, A. et al. Transformer-Coupled TES Frequency Domain Readout Prototype. J Low Temp Phys 199, 780–788 (2020). https://doi.org/10.1007/s10909-020-02376-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02376-8

Keywords

Navigation