Skip to main content
Log in

Theoretical Prediction of Thermodynamic Functions of TiC: Morse Ring-Shaped Potential

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this work, we theoretically predict thermodynamic properties of titanium carbide (TiC). To this end, we have analytically solved the Schrödinger equation with the Morse ring-shaped potential using Pekeris approximation. We have obtained energy eigenvalues for the potential using the generalized parametric Nikiforov–Uvarov (UV) procedure. Using the obtained energy eigenvalues, we could analytically determine the partition function of TiC. Then, we have calculated thermodynamic properties of the molecule such as specific heat at constant pressure and volume, entropy, internal energy and enthalpy and compared our results with simulation and experimental data. Our results clarify that the calculated enthalpy for the molecule is in excellent agreement compared to the experimental data in a wide temperature range when we consider the Morse ring-shaped potential. The specific heat at constant volume and internal energy using the Morse ring-shaped potential has good agreement with simulation data. Entropy of TiC molecule is in fairly agreement with experimental. Our theoretical model does not make a good prediction about the specific heat at constant pressure of TiC molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y.V. Loshchinin, Y.I. Folomeikin, T.P. Rykova, P.S. Marakhovsky, S.I. Pakhomkin, Inorg. Mater. Appl. Res. 5, 407 (2014)

    Google Scholar 

  2. Y.J. Guo, F. Lu, L. Zhang, H.L. Dong, Q.L. Tan, J.J. Xiong, Adv. Mater. Sci. Eng. 2018, 2317295 (2018)

    Google Scholar 

  3. J.Y. Liu, G.D. Zhang, C.S. Jia, Phys. Lett. A 377, 1444 (2013)

    ADS  MathSciNet  Google Scholar 

  4. X.T. Hu, J.Y. Liu, C.S. Jia, Comput. Theor. Chem. 1019, 137 (2013)

    Google Scholar 

  5. C.S. Jia, L.H. Zhang, C.W. Wang, Chem. Phys. Lett. 667, 211 (2017)

    ADS  Google Scholar 

  6. C.S. Jia, C.W. Wang, L.H. Zhang, X.L. Peng, R. Zeng, X.T. You, Chem. Phys. Lett. 676, 150 (2017)

    ADS  Google Scholar 

  7. R. Khordad, A. Ghanbari, Comput. Theor. Chem. 1155, 1 (2019)

    Google Scholar 

  8. R. Khordad, A. Avazpour, A. Ghanbari, Chem. Phys. 517, 30 (2019)

    Google Scholar 

  9. C.S. Jia, T. He, Z.W. Shui, Comput. Theor. Chem. 1108, 57 (2017)

    Google Scholar 

  10. P. Ammendola, F. Raganati, R. Chirone, Chem. Eng. J. 322, 302 (2017)

    Google Scholar 

  11. J. Bedia, C. Belver, S. Ponce, J. Rodriguez, J.J. Rodriguez, Chem. Eng. J. 333, 58 (2018)

    Google Scholar 

  12. S. Dastidar, C.J. Hawley, A.D. Dillon, A.D. Gutierrez-Perez, J.E. Spanier, A.T. Fafarman, J. Phys. Chem. Lett. 8, 1278 (2017)

    Google Scholar 

  13. V.L. Zherebtsov, M.M. Peganova, Fuel 102, 831 (2012)

    Google Scholar 

  14. C.S. Jia, L.H. Zhang, X.L. Peng, J.X. Luo, Y.L. Zhao, J.Y. Liu, J.J. Guo, L.D. Tang, Chem. Eng. Sci. 202, 70 (2019)

    Google Scholar 

  15. R. Jiang, C.S. Jia, Y.Q. Wang, X.L. Peng, L.H. Zhang, Chem. Phys. Lett. 726, 83 (2019)

    ADS  Google Scholar 

  16. B. Tang, Y.T. Wang, X.L. Peng, L.H. Zhang, C.S. Jia, J. Mol. Struct. 1199, 126958 (2019)

    Google Scholar 

  17. X.Y. Chen, J. Li, C.S. Jia, ACS Omega 4, 16121 (2019)

    Google Scholar 

  18. S. Zhang, D.L. Zhao, Aerospace Materials Handbook, vol. 6 (CRC Press, Boca Raton, 2012), p. 182

    Google Scholar 

  19. H. Hwu, J.G. Chen, Chem. Rev. 105, 185 (2005)

    Google Scholar 

  20. D.Y. Dang, J.L. Fan, H.R. Gong, J. Appl. Phys. 116, 033509 (2014)

    ADS  Google Scholar 

  21. L.H. Fang, L. Wang, J.H. Gong, H.S. Dai, D.Z. Miao, Trans. Nonferrous Metal. Soc. Chin. 20, 857 (2010)

    Google Scholar 

  22. B.A. Shafaay, S.R. Abas, A.S.K. Hashim, A.A.O. Musa, Iraqi J. Appl. Phys. 11, 9 (2015)

    Google Scholar 

  23. W.S. Williams, R.D. Schaal, J. Appl. Phys. 33, 955 (1962)

    ADS  Google Scholar 

  24. C.J. Engberg, E.H. Zehms, J. Am. Chem. Soc. 42, 300 (1959)

    Google Scholar 

  25. D. Varshney, S. Shriya, Int. J. Refract. Metal. H. 41, 375 (2013)

    Google Scholar 

  26. A. Arya, E.A. Carter, J. Chem. Phys. 118, 8982 (2003)

    ADS  Google Scholar 

  27. R.M. Arif Khalil, F. Hussain, M. Imran, U. Rasheed, A.M. Rana, G. Murtaza, Int. J. Hydrogen Energy 44, 6756 (2019)

    Google Scholar 

  28. M. Jafari, H.R. Hajiyani, Z. Sohrabikia, H. Galavani, Comput. Mater. Sci. 77, 224 (2013)

    Google Scholar 

  29. M. Jafari, A. Shekaari, N. Delavari, R. Jafari, J. Therm. Anal. Calorim. 119, 1445 (2019)

    Google Scholar 

  30. L.I.Y. Hong, W.W. Feng, Z. Bo, X. Ming, Z. Jun, H.Y. Jun, L.I.W. Hu, L.X. Jiang, Sci. Chin. 54, 2196 (2011)

    Google Scholar 

  31. K. Liu, X.L. Zhou, H.H. Chen, L.Y. Lu, J. Therm. Anal. Calorim. 110, 973 (2012)

    Google Scholar 

  32. S. Fujishiro, N.A. Gokcen, J. Phys. Chem. 65, 161 (1961)

    Google Scholar 

  33. S.P. Dodd, M. Cankurtaran, B. James, J. Mater. Sci. 38, 1107 (2003)

    ADS  Google Scholar 

  34. J. Kim, S. Kang, J. Alloys Compd. 528, 20 (2012)

    Google Scholar 

  35. Z. Sohrabikia, M. Jafari, J. Clust. Sci. 77, 224 (2013)

    Google Scholar 

  36. R. Khordad, B. Mirhosseini, M.M. Mirhosseini, J. Low Temp. Phys. 197, 95 (2019)

    ADS  Google Scholar 

  37. X.Q. Song, C.W. Wang, C.S. Jia, Chem. Phys. Lett. 673, 50 (2017)

    ADS  Google Scholar 

  38. C.S. Jia, C.W. Wang, L.H. Zhang, X.L. Peng, H.M. Tang, J.Y. Liu, Y. Xiong, R. Zeng, Chem. Phys. Lett. 692, 57 (2018)

    ADS  Google Scholar 

  39. C.S. Jia, Y.F. Diao, X.J. Liu, P.Q. Wang, J.Y. Liu, G.D. Zhang, J. Chem. Phys. 137, 014101 (2012)

    ADS  Google Scholar 

  40. C.S. Jia, R. Zeng, X.L. Peng, L.H. Zhang, Y.L. Zhao, Chem. Eng. Sci. 190, 1 (2018)

    Google Scholar 

  41. X.L. Peng, R. Jiang, C.S. Jia, L.H. Zhang, Y.L. Zhao, Chem. Eng. Sci. 190, 122 (2018)

    Google Scholar 

  42. J.D. Olson, Fluid Phase Equilib. 418, 50 (2016)

    Google Scholar 

  43. M. Deng, C.S. Jia, Eur. Phys. J. Plus 133, 258 (2018)

    Google Scholar 

  44. J.F. Wang, X.L. Peng, L.H. Zhang, C.W. Wang, C.S. Jia, Chem. Phys. Lett. 686, 131 (2017)

    ADS  Google Scholar 

  45. S. Miraboutalebi, Chin. Phys. B 25, 100301 (2016)

    ADS  Google Scholar 

  46. B.T. Mbadjoun, J.M. Ema’a Ema’a, J. Yomi, P.E. Abiama, G.H. Ben-Bolie, P.O. Ateba, Mod. Phys. Lett. A 34, 1950072 (2019)

    ADS  Google Scholar 

  47. ShM Nagiyev, A.I. Ahmadov, Int. J. Mod. Phys. A 34, 1950089 (2019)

    ADS  Google Scholar 

  48. Y. Sun, J.L. Xiao, Opt. Quant. Electron. 51, 110 (2019)

    Google Scholar 

  49. J.L. Xiao, J. Low Temp. Phys. 195, 442 (2019)

    ADS  Google Scholar 

  50. R. Jiang, C.S. Jia, Y.Q. Wang, X.L. Peng, L.H. Zhang, Chem. Phys. Lett. 715, 186 (2019)

    ADS  Google Scholar 

  51. C.S. Jia, X.T. You, J.Y. Liu, L.H. Zhang, X.L. Peng, Y.T. Wang, L.S. Wei, Chem. Phys. Lett. 717, 16 (2019)

    ADS  Google Scholar 

  52. C.S. Jia, C.W. Wang, L.H. Zhang, X.L. Peng, H.M. Tang, R. Zeng, Chem. Eng. Sci. 183, 26 (2018)

    Google Scholar 

  53. M. Buchowiecki, Mol. Phys. 117, 1640 (2019)

    ADS  Google Scholar 

  54. S.M. Ikhdair, R. Sever, J. Mol. Struct.-Theochem. 855, 13 (2008)

    Google Scholar 

  55. M. Mosca, Quantum Algorithms Computational Complexity (Springer, New York, 2012)

    Google Scholar 

  56. G.H. Sun, S.H. Dong, Commun. Theor. Phys. 58, 195 (2012)

    Google Scholar 

  57. H. Hassanabadi, B.H. Yazarloo, S. Zarrinkamar, H. Rahimov, Commun. Theor. Phys. 57, 339 (2011)

    ADS  Google Scholar 

  58. G. Ovando, J.J. Pena, J. Morales, Theor. Chem. Acc. 135, 62 (2016)

    Google Scholar 

  59. S.H. Dong, G.H. Sun, M.L. Gassou, Phys. Lett. A 328, 299 (2005)

    ADS  Google Scholar 

  60. C.Y. Chen, S.H. Dong, Phys. Lett. A 335, 374 (2005)

    ADS  MathSciNet  Google Scholar 

  61. A.D. Alhaidari, J. Phys. A Math. Gen. 38, 3409 (2005)

    ADS  Google Scholar 

  62. X.A. Zhang, K. Chen, Z.L. Duan, Chin. Phys. 14, 42 (2005)

    Google Scholar 

  63. M. Amirfakhrian, M. Hamzavi, Mol. Phys. 110, 2173 (2012)

    ADS  Google Scholar 

  64. M.C. Zhang, G.Q. Huang-Fu, J. Math. Phys. 52, 053518 (2011)

    ADS  MathSciNet  Google Scholar 

  65. C.L. Pekeris, Phys. Rev. 45, 98 (1934)

    ADS  Google Scholar 

  66. A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics (Birkhauser, Berlin, 1988)

    MATH  Google Scholar 

  67. National Institute of Standards and Technology (NIST), NIST Chemistry WebBook, NIST Standard Reference Database Number 69, 2017. (http://Webbook.nist.gov/chemistry/)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Khordad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khordad, R., Ghanbari, A. Theoretical Prediction of Thermodynamic Functions of TiC: Morse Ring-Shaped Potential. J Low Temp Phys 199, 1198–1210 (2020). https://doi.org/10.1007/s10909-020-02368-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02368-8

Keywords

Navigation