Skip to main content
Log in

Design of a Testbed for the Study of System Interference in Space CMB Polarimetry

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

LiteBIRD is a proposed JAXA satellite mission to measure the CMB B-mode polarization with unprecedented sensitivity (\(\sigma _r\sim 0.001\)). To achieve this goal, 4676 state-of-the-art TES bolometers will observe the whole sky for 3 years from L2. These detectors, as well as the SQUID readout, are extremely susceptible to EMI and other instrumental disturbances, e.g., static magnetic field and vibration. As a result, careful analysis of the interference between the detector system and the rest of the telescope instruments is essential. This study is particularly important during the early phase of the project, in order to address potential problems before the final assembly of the whole instrument. We report our plan for the preparation of a cryogenic testbed to study the interaction between the detectors and other subsystems, especially a polarization modulator unit consisting of a magnetically rotating half-wave plate. We also present the requirements, current status and preliminary results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. U. Seljak, M. Zaldarriaga, Phys. Rev. D 60(4), 3504 (1999). https://doi.org/10.1103/PhysRevD.60.043504

    Article  ADS  Google Scholar 

  2. M. Zaldarriaga, U. Seljak, Phys. Rev. D 59(12), 3507 (1999). https://doi.org/10.1103/PhysRevD.59.123507

    Article  ADS  Google Scholar 

  3. U. Seljak, M. Zaldarriaga, Phys. Rev. Lett. 78(11), 2054–2057 (1997). https://doi.org/10.1103/PhysRevLett.78.2054

    Article  ADS  Google Scholar 

  4. M. Zaldarriaga, U. Seljak, Phys. Rev. D 55(4), 1830–1840 (1997). https://doi.org/10.1103/PhysRevD.55.1830

    Article  ADS  Google Scholar 

  5. M. Kamionkowski, A. Kosowsky, A. Stebbins, Phys. Rev. Lett. 78(11), 2058–2061 (1997). https://doi.org/10.1103/PhysRevLett.78.2058

    Article  ADS  Google Scholar 

  6. T. Matsumura et al., J. Low Temp. Phys. 176, 733 (2014). https://doi.org/10.1007/s10909-013-0996-1

    Article  ADS  Google Scholar 

  7. A. Suzuki et al., J. Low Temp. Phys. 193, 1048 (2018). https://doi.org/10.1007/s10909-018-1947-7

    Article  ADS  Google Scholar 

  8. Y. Sakurai et al., in SPIE Astronomical Telescopes + Instrumentation, p. 107080E (2018). https://doi.org/10.1117/12.2312391

  9. K. Komatsu et al., in SPIE Astronomical Telescopes + Instrumentation, p. 1070847 (2018). https://doi.org/10.1117/12.2312431

  10. K. Komatsu et al. arXiv:1905.13520

  11. T. Ghigna et al. (under review)

  12. Y. Sekimoto et al., in SPIE Astronomical Telescopes + Instrumentation, p. 106981Y (2018). https://doi.org/10.1117/12.2313432

  13. H. Sugai, P.A.R. Ade, Y. Akiba et al., J. Low Temp. Phys. (2020). https://doi.org/10.1007/s10909-019-02329-w

    Article  Google Scholar 

  14. HPD, ADR Cryostat 106. http://www.hpd-online.com/106_cryostat.php

  15. M.C. Runyan, W.C. Jones, Cryogenics 48(9), 448–454 (2008). https://doi.org/10.1016/j.cryogenics.2008.06.002

    Article  ADS  Google Scholar 

  16. Henkel, Loctite Stycast 2850FT. https://www.henkel-adhesives.com/us/en/product/potting-compounds/loctite_stycast_2850ft.html

  17. Y. Inoue et al., Appl. Opt. 53, 1727 (2014). https://doi.org/10.1364/AO.53.001727

    Article  ADS  Google Scholar 

  18. Laird Technology, Product Eccosorb CR. http://www.eccosorb.com/products-eccosorb-cr.htm

  19. E.M. Vavagiakis et al., J. Low Temp. Phys. 193, 288 (2018). https://doi.org/10.1007/s10909-018-1920-5

    Article  ADS  Google Scholar 

  20. J. Mather, Appl. Opt. 21, 1125–1129 (1982). https://doi.org/10.1364/AO.21.001125

    Article  ADS  Google Scholar 

  21. Suzuki. Ph.D. thesis, University of California, Berkeley (2013)

  22. T. Matsumura et al., Appl. Opt. 55, 3502–3509 (2016). https://doi.org/10.1364/AO.55.003502

    Article  ADS  Google Scholar 

  23. Magnicon, Squid Series Arrays. http://www.magnicon.com/squid-sensors/squid-series-arrays/

  24. S.L. Stever, F. Couchot, V. Sauvage et al., J. Low Temp. Phys. (2019). https://doi.org/10.1007/s10909-019-02302-7

    Article  Google Scholar 

  25. K. Irwin, G.C. Hilton, Transition-edge sensors, in Cryogenic Particle Detection. Topics in Applied Physics, vol. 99. https://doi.org/10.1007/10933596_3

Download references

Acknowledgements

TG acknowledges a Oxford-IPMU joint fellowship for funding his doctoral studies. TG, TM, MH, SLS, YS, NK acknowledge Kavli IPMU supported by World Premier International Research Center Initiative (WPI), MEXT, Japan. This work was supported by JSPS KAKENHI Grant Number JP18KK0083 and by JSPS Core-to-Core Program, A. Advanced Research Networks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ghigna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghigna, T., Matsumura, T., Hazumi, M. et al. Design of a Testbed for the Study of System Interference in Space CMB Polarimetry. J Low Temp Phys 199, 622–630 (2020). https://doi.org/10.1007/s10909-020-02359-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02359-9

Keywords

Navigation