Skip to main content
Log in

Complex Beam Mapping and Fourier Optics Analysis of a Wide-Field Microwave Kinetic Inductance Detector Camera

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

For astronomical instruments, accurate knowledge of the optical pointing and coupling is essential to characterize the alignment and performance of (sub-)systems prior to integration and deployment. Ideally, this requires the phase response of the optical system, which for direct (phase insensitive) detectors was not previously accessible. Here, we show development of the phase-sensitive complex beam pattern technique using a dual optical source heterodyne technique for a large-field-of-view microwave kinetic inductance detector camera at 350 GHz. We show here how you can analyze the measured data with Fourier optics, which allows integration into a telescope model to calculate the on-sky beam pattern and telescope aperture efficiency prior to deployment at a telescope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Murphy et al., J. Instrum. 5, 4 (2010). https://doi.org/10.1088/1748-0221/5/04/T04001

    Article  Google Scholar 

  2. D. Teyssier, N.D. Whyborn, W. Luinge, W. Jellema, J.W. Kooi, P. Dieleman, T.D. Graauw, in Proceedings of the 19th ISSTT (2008), pp. 132–139. http://library.nrao.edu/isstt/catalog/2008132139

  3. C.Y.E. Tong et al., IEEE LMWC 13(6), 235 (2003). https://doi.org/10.1109/LMWC.2003.814602

    Article  Google Scholar 

  4. J. Tervo, J. Turunen, Optics Commun. 209(1–3), 7 (2002). https://doi.org/10.1016/S0030-4018(02)01665-6

    Article  ADS  Google Scholar 

  5. D.H. Martin, J.W. Bowen, IEEE. Trans. Microw. Theory Tech. 41(10), 1676 (1993). https://doi.org/10.1109/22.247911

    Article  ADS  Google Scholar 

  6. M. Carter, et al., in Proceedings of the 13th ISSTT (2002), pp. 515 –524. http://library.nrao.edu/isstt/catalog/2002515524

  7. W. Jellema, Optical design and performance verification of Herschel-HIFI. Ph.D. thesis, University of Groningen (2015). http://hdl.handle.net/11370/24e22068-b3ba-45d9-b72b-503e951b193f

  8. M. Naruse et al., ExA 24(1–3), 89 (2009). https://doi.org/10.1007/s10686-008-9136-3

    Article  ADS  Google Scholar 

  9. A.M. Baryshev et al., A&A 577, A129 (2015). https://doi.org/10.1051/0004-6361/201425529

    Article  ADS  Google Scholar 

  10. P.K. Day et al., Nature 425, 6960 (2003). https://doi.org/10.1038/nature02037

    Article  Google Scholar 

  11. K.K. Davis et al., IEEE Trans. THz Sci. Technol. 7(1), 98 (2017). https://doi.org/10.1109/TTHZ.2016.2617869

    Article  MathSciNet  Google Scholar 

  12. K.K. Davis et al., IEEE Trans. THz Sci. Technol. 9(1), 67 (2019). https://doi.org/10.1109/TTHZ.2018.2883820

    Article  Google Scholar 

  13. L. Ferrari et al., IEEE Trans. THz Sci. Technol. 8(6), 572 (2018). https://doi.org/10.1109/TTHZ.2018.2871365

    Article  Google Scholar 

  14. P.F. Goldsmith, Quasioptical systems: Gaussian beam quasioptical propagation and applications. IEEE Press/Chapman & Hall Publishers series on microwave technology and RF Quasioptical systems (1998)

  15. J.A. Murphy, Int. J. Infrared Milli. Waves 8(9), 1165 (1987). https://doi.org/10.1007/BF01010819

    Article  ADS  Google Scholar 

  16. S.J.C. Yates et al., IEEE Trans. THz Sci. Technol. 7(6), 789 (2017). https://doi.org/10.1109/TTHZ.2017.2755500

    Article  Google Scholar 

  17. M.J. Griffin, J.J. Bock, W.K. Gear, Appl. Opt. 41(31), 6543 (2002)

    Article  ADS  Google Scholar 

  18. C.N. Thomas, S. Withington, I.E.E.E. Trans, IEEE Trans. THz. Sci. Technol. 2(1), 50 (2012). https://doi.org/10.1109/TTHZ.2011.2177693

    Article  Google Scholar 

  19. J. van Rantwijk et al., IEEE Trans. Microw. Theory Tech. 64(6), 1876 (2016). https://doi.org/10.1109/TMTT.2016.2544303

    Article  ADS  Google Scholar 

  20. K.K. Davis et al., Proc. SPIE 10708, 10708 (2018). https://doi.org/10.1117/12.2314383

    Article  Google Scholar 

  21. J. Ruze, Proc. IEEE 54(4), 633 (1966). https://doi.org/10.1109/PROC.1966.4784

    Article  ADS  Google Scholar 

  22. J.J.A. Baselmans et al., A&A 601, A89 (2017). https://doi.org/10.1051/0004-6361/201629653

    Article  ADS  Google Scholar 

  23. A. Endo et al., Nat. Astron. (2019). https://doi.org/10.1038/s41550-019-0850-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Ronald Hesper for his contributions to the hardware system. K. Davis is currently supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-1801983. This work was in part supported by ERC starting Grant ERC-2009-StG Grant 240602 TFPA. The contribution of J.J.A. Baselmans is also supported by the ERC consolidator Grant COG 648135 MOSAIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. C. Yates.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yates, S.J.C., Davis, K.K., Jellema, W. et al. Complex Beam Mapping and Fourier Optics Analysis of a Wide-Field Microwave Kinetic Inductance Detector Camera. J Low Temp Phys 199, 156–163 (2020). https://doi.org/10.1007/s10909-020-02352-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02352-2

Keywords

Navigation