Skip to main content
Log in

The Coherence Time of Asymmetric Gaussian Confinement Potential Quantum Well Qubit

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Coherent properties are critical to quantum communication. The coherent properties of qubits have been considered for a RbCl asymmetric Gaussian confinement potential quantum well (AQCPQW) qubit by the Pekar-type variational method (PTVM) and the Fermi Golden Rule. Then, we analytically derived the coherence time (CT) changes with the polaron radius, the height and range of the AGCPQW. On the bases of the present work’s numerical results, the CT will increase with the decrease in the height of the AGCPQW and the polaron radius. The CT decreases firstly and then increases with the increase in the confinement potential’s range, and when the confinement potential’s range takes the appropriate value, the CT takes a minimum value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D.R. Yakovlev, W. Ossau, G. Landwehr et al., J. Solid State Commun. 76, 3 (1990)

    Article  Google Scholar 

  2. D.D. Awschalom, M.R. Freeman, N. Samarth et al., J. Phys. Rev. Lett. 66(9), 1212 (1991)

    Article  ADS  Google Scholar 

  3. I.A. Akimov, T. Godde, K.V. Kavokin et al., J. Phys. Rev. B 95(15), 155303 (2017)

    Article  ADS  Google Scholar 

  4. G. Hai, F.M. Peeters, J.T. Devreese, J. Phys. Rev. B 42(17), 11063 (1990)

    Article  ADS  Google Scholar 

  5. F.Q. Zhao, X.X. Liang, S.J. Ban, Int. J. Mod. Phys. B 15(05), 527–535 (2001)

    Article  ADS  Google Scholar 

  6. Y. Dakhnovskii, J. Ann. Phys. 230(1), 145–160 (1994)

    Article  ADS  Google Scholar 

  7. R. Khordad, H. Bahramiyan, Opt. Quantum Electron. 47(8), 2727–2745 (2015)

    Article  Google Scholar 

  8. R. Khordad, Opt. Quantum Electron. 48(4), 251 (2016)

    Article  MathSciNet  Google Scholar 

  9. R. Khordad, Indian J. Phys. 91(8), 869–873 (2017)

    Article  ADS  Google Scholar 

  10. R. Khordad, A. Ghanbari, Opt. Quantum Electron. 49(2), 76 (2017)

    Article  Google Scholar 

  11. H. Bahramiyan, R. Khordad, H.R.R. Sedehi, Indian J. Phys. 92(7), 941–945 (2018)

    Article  ADS  Google Scholar 

  12. L. Dinh, H.V. Phuc, J. Superlattices Microstruct. 86, 111–120 (2015)

    Article  ADS  Google Scholar 

  13. R. Khordad, S. Goudarzi, H. Bahramiyan, J. Indian J. Phys. 90(6), 659–664 (2016)

    Article  ADS  Google Scholar 

  14. Y. Sun, J.L. Xiao, J. Nanophotonics 12(4), 046004 (2018)

    Article  ADS  Google Scholar 

  15. Y. Sun, X.J. Miao, Z.H. Ding et al., J. Semicond. 38(4), 042002 (2017)

    Article  ADS  Google Scholar 

  16. J.L. Xiao, J. Int. J. Theor. Phys. 55(1), 147–154 (2016)

    Article  Google Scholar 

  17. C.Y. Cai, C.L. Zhao, J.L. Xiao, J. Commun. Theor. Phys. 63(2), 159 (2015)

    Article  ADS  Google Scholar 

  18. W. Xiao, B. Qi, J.L. Xiao, J. Low Temp. Phys. 179, 166 (2015)

    Article  ADS  Google Scholar 

  19. Y. Wang, J.N. Zhang, K. Kim, Acta Phys. Sin. 68(3), 30306 (2019)

    Google Scholar 

  20. T. Dekorsy, A.M.T. Kim, G.C. Cho, S. Hunsche, H.J. Bakker, H. Kurz, S.L. Chuang, K. Köhler, Phys. Rev. Lett. 77(14), 3045–3048 (1996)

    Article  ADS  Google Scholar 

  21. W. Lau, J. Olesberg, M. Flatté, Phys. Rev. B 64, 161301 (2000)

    Article  ADS  Google Scholar 

  22. B. Don, H. Zhao, G. Schwartz, T. Unkelbach, H. Kalt, Phys. Status Solidi C 1, 462–465 (2004)

    Article  ADS  Google Scholar 

  23. L.D. Landau, S.I. Pekar, Zh. Eksp. Teor. Fiz. 16, 341 (1946)

    Google Scholar 

  24. S.I. Pekar, Untersuchungen über die Elektronen-theorie der Kristalle (Akademie Verlag, Berlin, 1954)

    MATH  Google Scholar 

  25. L. Jacak, P. Hawrylak, A. Wójs, Quantum dot (Springer, Berlin, 1998)

    Book  Google Scholar 

  26. Z.H. Ding, Y. Sun, J.L. Xiao, Int. J. Quantum Inf. 10, 1250077 (2012)

    Article  MathSciNet  Google Scholar 

  27. W. Xiao, J.L. Xiao, Superlattices Microstruct. 52, 851 (2012)

    Article  ADS  Google Scholar 

  28. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Nonrelativistic Theory) (London, 1987).

  29. J.L. Xiao, Superlattices Microstruct. 90, 308 (2016)

    Article  ADS  Google Scholar 

  30. J.T. Devreese, Polarons in Ionic Crystals and Polar Semiconductors (North-Holland Publ. Co., Amsterdam, 1972)

    Google Scholar 

  31. B. Hackens, S. Faniel, C. Gustin, X. Wallart, S. Bollaert, A. Cappy, V. Bayot, Phys. Rev. Lett. 94, 146802 (2005)

    Article  ADS  Google Scholar 

  32. J. Hackmann, Ph Glasenapp, A. Greilich, M. Bayer, F.B. Anders, Phys. Rev. Lett. 115, 207401 (2015)

    Article  ADS  Google Scholar 

  33. X.Z. Yuan, K.D. Zhu, W.S. Li, Eur. Phys. J. D 31, 499 (2004)

    Article  ADS  Google Scholar 

  34. J. Wiersig, Phys. Status Solidi B 248, 883 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Science Foundation of China under Grant Nos. 11464033 & 11464034, and the Scientific Research Fund of Inner Mongolia University for Nationalities under Grant Nos. NMDYB1756 N and NMDYB18024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Lin Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, W., Xiao, JL. & Cai, CY. The Coherence Time of Asymmetric Gaussian Confinement Potential Quantum Well Qubit. J Low Temp Phys 198, 233–240 (2020). https://doi.org/10.1007/s10909-019-02333-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02333-0

Keywords

Navigation