Skip to main content
Log in

The Experiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM)

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a cryogenic balloon-borne instrument that will survey galaxy and star formation history over cosmological timescales. Rather than identifying individual objects, EXCLAIM will be a pathfinder to demonstrate an intensity mapping approach, which measures the cumulative redshifted line emission. EXCLAIM will operate at 420–540 GHz with a spectral resolution \(R=512\) to measure the integrated CO and [CII] in redshift windows spanning \(0< z < 3.5\). CO and [CII] line emissions are key tracers of the gas phases in the interstellar medium involved in star formation processes. EXCLAIM will shed light on questions such as why the star formation rate declines at \(z < 2\), despite continued clustering of the dark matter. The instrument will employ an array of six superconducting integrated grating-analog spectrometers (\(\mu\)-Spec) coupled to microwave kinetic inductance detectors. Here we present an overview of the EXCLAIM instrument design and status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.N. Afsar, H. Chi, Millimeter wave complex refractive index, complex dielectric permittivity and loss tangent of extra high purity and compensated silicon. Int. J. Infrared Millim. Waves 15, 1181–1188 (1994). https://doi.org/10.1007/BF02096073

    Article  ADS  Google Scholar 

  2. D.H. Archer, Lens-fed multiple beam arrays. Microwave J. 27, 171 (1984)

    ADS  Google Scholar 

  3. E.M. Barrentine, G. Cataldo, A.-D. Brown, N. Ehsan, O. Noroozian, T.R. Stevenson, K. U-Yen, E.J. Wollack, S.H. Moseley, Design and performance of a high resolution \(\mu\)-spec: an integrated sub-millimeter spectrometer, in Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, vol. 9914 (International Society for Optics and Photonics, 2016), p. 99143O

  4. E.M. Barrentine, O. Noroozian, A.-D. Brown, G. Cataldo, N. Ehsan, W.-T. Hsieh, T.R. Stevenson, K. U-Yen, E.J. Wollack, S.H. Moseley, Overview of the design, fabrication and performance requirements of micro-spec, an integrated submillimeter spectrometer, in 16th International Workshop on Low Temperature Physics (2015)

  5. J.L. Bernal, P.C. Breysse, H. Gil-Marín, E.D. Kovetz, A User’s Guide to Extracting Cosmological Information from Line-Intensity Maps (2019). arXiv e-prints, art. arXiv:1907.10067

  6. B.T. Bulcha, G. Cataldo, T.R. Stevenson, K. U-Yen, S.H. Moseley, E.J. Wollack, Electromagnetic design of a magnetically-coupled spatial power combiner. J. Low Temp. Phys. 193(5–6), 777–785 (2018)

    Article  ADS  Google Scholar 

  7. C.L. Carilli, F. Walter, Cool gas in high-redshift galaxies. Annu. Rev. Astron. Astrophys. 51, 105–161 (2013). https://doi.org/10.1146/annurev-astro-082812-140953

    Article  ADS  Google Scholar 

  8. G. Cataldo, W.-T. Hseih, W.-C. Huang, S.H. Moseley, T.R. Stevenson, E.J. Wollack, Micro-Spec: an integrated direct-detection spectrometer for far-infrared space telescopes, in Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave, Proceedings of SPIE, vol. 9143 (2014), p. 91432C. https://doi.org/10.1117/12.2055202

  9. G. Cataldo, W.-T. Hsieh, W.-C. Huang, S.H. Moseley, T.R. Stevenson, E.J. Wollack, Micro-Spec: an ultracompact, high-sensitivity spectrometer for far-infrared and submillimeter astronomy. Appl. Opt. 53, 1094 (2014). https://doi.org/10.1364/AO.53.001094

    Article  ADS  Google Scholar 

  10. G. Cataldo, E.M. Barrentine, B.T. Bulcha, N. Ehsan, L.A. Hess, O. Noroozian, T.R. Stevenson, K. U-Yen, E.J. Wollack, S.H. Moseley, Second-generation design of micro-spec: a medium-resolution, submillimeter-wavelength spectrometer-on-a-chip. J. Low Temp. Phys. 193, 923–930 (2018)

    Article  ADS  Google Scholar 

  11. G. Cataldo, E.M. Barrentine, B.T. Bulcha, N. Ehsan, L.A. Hess, O. Noroozian, T.R. Stevenson, E.J. Wollack, S.H. Moseley, E.R. Switzer, Second-generation Micro-Spec: a compact spectrometer for far-infrared and submillimeter space missions. Acta Astronaut. 162, 155–159 (2019). https://doi.org/10.1016/j.actaastro.2019.06.012

    Article  ADS  Google Scholar 

  12. R. Decarli, F. Walter, J. Gónzalez-López, M. Aravena, L. Boogaard, C. Carilli, P. Cox, E. Daddi, G. Popping, D. Riechers, B. Uzgil, A. Weiss, R.J. Assef, R. Bacon, F.E. Bauer, F. Bertoldi, R. Bouwens, T. Contini, P.C. Cortes, E. da Cunha, T. Díaz-Santos, D. Elbaz, H. Inami, J. Hodge, R. Ivison, O. Le Fèvre, B. Magnelli, M. Novak, P. Oesch, H.-W. Rix, M.T. Sargent, I.R. Smail, A.M. Swinbank, R.S. Somerville, P. van der Werf, J. Wagg, L. Wisotzki, The ALMA Spectroscopic Survey in the HUDF: CO luminosity functions and the molecular gas content of galaxies through cosmic history (2019). arXiv e-prints, art. arXiv:1903.09164

  13. J.J. Derby, R.A. Brown, Thermal-capillary analysis of Czochralski and liquid encapsulated Czochralski crystal growth. I. Simulation. J. Cryst. Growth 74(3), 605–624 (1986). https://doi.org/10.1016/0022-0248(86)90208-3

    Article  ADS  Google Scholar 

  14. S. Eftekharzadeh, A.D. Myers, M. White, D.H. Weinberg, D.P. Schneider, Y. Shen, A. Font-Ribera, N.P. Ross, I. Paris, A. Streblyanska, Clustering of intermediate redshift quasars using the final SDSS III-BOSS sample. MNRAS 453(3), 2779–2798 (2015). https://doi.org/10.1093/mnras/stv1763

    Article  ADS  Google Scholar 

  15. D.F. Filipovic, S.S. Gearhart, G.M. Rebeiz, Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses. IEEE Trans. Microw. Theory Tech. 41, 1738–1749 (1993). https://doi.org/10.1109/22.247919

    Article  ADS  Google Scholar 

  16. N. N. Gandilo, P.A.R. Ade, D. Benford, C.L. Bennett, D.T. Chuss, J.L. Dotson, J.R. Eimer, D.J. Fixsen, M. Halpern, G. Hilton, G.F. Hinshaw, K. Irwin, C. Jhabvala, M. Kimball, A. Kogut, L. Lowe, J.J. McMahon, T.M. Miller, P. Mirel, S.H. Moseley, S. Pawlyk, S. Rodriguez, E. Sharp, P. Shirron, J.G. Staguhn, D.F. Sullivan, E.R. Switzer, P. Taraschi, C.E. Tucker, E.J. Wollack, The primordial inflation polarization explorer (PIPER), in Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, Proceedings of SPIE, vol. 9914 (2016), p. 99141J. https://doi.org/10.1117/12.2231109

  17. J. Gao, M. Daal, J.M. Martinis, A. Vayonakis, J. Zmuidzinas, B. Sadoulet, B.A. Mazin, P.K. Day, H.G. Leduc, A semiempirical model for two-level system noise in superconducting microresonators. Appl. Phys. Lett. 92(21), 212504 (2008). https://doi.org/10.1063/1.2937855

    Article  ADS  Google Scholar 

  18. K. Harrington, T. Marriage, A. Ali, J.W. Appel, C.L. Bennett, F. Boone, M. Brewer, M. Chan, D.T. Chuss, F. Colazo, S. Dahal, K. Denis, R. Dünner, J. Eimer, T. Essinger-Hileman, P. Fluxa, M. Halpern, G. Hilton, G.F. Hinshaw, J. Hubmayr, J. Iuliano, J. Karakla, J. McMahon, N.T. Miller, S.H. Moseley, G. Palma, L. Parker, M. Petroff, B. Pradenas, K. Rostem, M. Sagliocca, D. Valle, D. Watts, E. Wollack, Z. Xu, L. Zeng, The cosmology large angular scale surveyor, in Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, Proceedings of SPIE, vol. 9914 (2016), p. 99141K. https://doi.org/10.1117/12.2233125

  19. L.A. Hess, E.M. Barrentine, A.D. Brown, A. Gangopadhyay, K. Livi, M. Mirzae, S.H. Moseley, O. Noroozian, T.R. Stevenson, E.R. Switzer, Low-loss microstrip transmission line fabricated with improved liftoff process, in 18th International Workshop on Low Temperature Detectors (LTD-18); July 22, 2019–July 26, 2019; Milano, Italy (2019)

  20. J. Hickish, Z. Abdurashidova, Z. Ali, K.D. Buch, S.C. Chaudhari, H. Chen, M. Dexter, R.S. Domagalski, J. Ford, G. Foster, D. George, J. Greenberg, L. Greenhill, A. Isaacson, H. Jiang, G. Jones, F. Kapp, H. Kriel, R. Lacasse, A. Lutomirski, D. MacMahon, J. Manley, A. Martens, R. McCullough, M.V. Muley, W. New, A. Parsons, D.C. Price, R.A. Primiani, J. Ray, A. Siemion, V. van Tonder, L. Vertatschitsch, M. Wagner, J. Weintroub, D. Werthimer, A decade of developing radio-astronomy instrumentation using CASPER open-source technology. J. Astron. Instrum. 5, 1641001–12 (2016). https://doi.org/10.1142/S2251171716410014

    Article  Google Scholar 

  21. M. Ji, C. Musante, S. Yngvesson, A.J. Gatesman, J. Waldman, Study of parylene as anti-reflection coating for silicon optics at THz frequencies, in Eleventh international symposium on space terahertz technology (2000), p. 407

  22. L. Knox, Determination of inflationary observables by cosmic microwave background anisotropy experiments. Phys. Rev. D 52(8), 4307–4318 (1995). https://doi.org/10.1103/PhysRevD.52.4307

    Article  ADS  Google Scholar 

  23. D. Koller et al., The am atmospheric model. ALMA memo 377 (2001)

  24. T.Y. Li, R.H. Wechsler, K. Devaraj, S.E. Church, Connecting CO intensity mapping to molecular gas and star formation in the epoch of galaxy assembly. Astrophys. J. 817, 169 (2016). https://doi.org/10.3847/0004-637X/817/2/169

    Article  ADS  Google Scholar 

  25. A. Lidz, S.R. Furlanetto, S.P. Oh, J. Aguirre, T.-C. Chang, O. Doré, J.R. Pritchard, Intensity mapping with carbon monoxide emission lines and the redshifted 21 cm line. Astrophys. J. 741, 70 (2011). https://doi.org/10.1088/0004-637X/741/2/70

    Article  ADS  Google Scholar 

  26. A. Loureiro, B. Moraes, F.B. Abdalla, A. Cuceu, M. McLeod, L. Whiteway, S.T. Balan, A. Benoit-Lévy, O. Lahav, M. Manera, R.P. Rollins, H.S. Xavier, Cosmological measurements from angular power spectra analysis of BOSS DR12 tomography. MNRAS 485, 326–355 (2019). https://doi.org/10.1093/mnras/stz191

    Article  ADS  Google Scholar 

  27. N.P. Lourie, P.A.R. Ade, F.E. Angile, P.C. Ashton, J.E. Austermann, M.J. Devlin, B. Dober, N. Galitzki, J. Gao, S. Gordon, Preflight characterization of the BLAST-TNG receiver and detector arrays, in Proceedings of SPIE, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10708 (2018), p. 107080L. https://doi.org/10.1117/12.2314396

  28. P. Madau, M. Dickinson, Cosmic star-formation history. Annu. Rev. Astron. Astrophys. 52, 415–486 (2014). https://doi.org/10.1146/annurev-astro-081811-125615

    Article  ADS  Google Scholar 

  29. O. Noroozian, E. Barrentine, A. Brown, G. Cataldo, N. Ehsan, W.-T. Hsieh, T. Stevenson, K. U-yen, E. Wollack, S.H. Moseley. \(\mu\)-spec: an efficient compact integrated spectrometer for submillimeter astrophysics, in26TH International Symposium on Space Terahertz Technology (2015)

  30. O. Noroozian, E. Barrentine, T. Stevenson, A.-D. Brown, V. Mikula, K. U-yen, E. Wollack, S.H. Moseley. Photon counting kinetic inductance detectors for THz/submillimeter space spectroscopy, in 17th International Workshop on Low Temperature Detectors (2017)

  31. H. Padmanabhan, Constraining the evolution of [CII] intensity through the end stages of reionization. MNRAS 488(3), 3014–3023 (2019). https://doi.org/10.1093/mnras/stz1878

    Article  ADS  Google Scholar 

  32. A. Paiella, A. Coppolecchia, L. Lamagna, P.A.R. Ade, E.S. Battistelli, M.G. Castellano, I. Colantoni, F. Columbro, G. D’Alessandro, P. de Bernardis, S. Gordon, S. Masi, P. Mauskopf, G. Pettinari, F. Piacentini, G. Pisano, G. Presta, C. Tucker, Kinetic inductance detectors for the OLIMPO experiment: design and pre-flight characterization. J. Cosmol. Astropart. Phys. 1, 039 (2019). https://doi.org/10.1088/1475-7516/2019/01/039

    Article  ADS  Google Scholar 

  33. A. Patel, A. Brown, W.-T. Hsieh, T. Stevenson, S.H. Moseley, K. U-yen, N. Ehsan, E. Barrentine, G. Manos, E.J. Wollack, Fabrication of mkids for the microspec spectrometer. IEEE Trans. Appl. Supercond. 23(3), 2400404–2400404 (2013)

    Article  ADS  Google Scholar 

  34. S. Pawlyk, P.A.R. Ade, D. Benford, C.L. Bennett, D.T. Chuss, R. Datta, J.L. Dotson, J.R. Eimer, D.J. Fixsen, N.N. Gandilo, T.M. Essinger-Hileman, M. Halpern, G. Hilton, G.F. Hinshaw, K. Irwin, C. Jhabvala, M. Kimball, A. Kogut, L. Lowe, J.J. McMahon, T.M. Miller, P. Mirel, S.H. Moseley, S. Rodriguez, E. Sharp, P. Shirron, J.G. Staguhn, D.F. Sullivan, E.R. Switzer, P. Taraschi, C.E. Tucker, A. Walts, E.J. Wollack, The primordial inflation polarization explorer (PIPER): current status and performance of the first flight, in Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10708, (2018), p. 1070806. https://doi.org/10.1117/12.2313874

  35. G. Popping, E. van Kampen, R. Decarli, M. Spaans, R.S. Somerville, S.C. Trager, Sub-mm emission line deep fields: CO and [CII] luminosity functions out to \(\text{ z } = 6\). MNRAS 461, 93–110 (2016). https://doi.org/10.1093/mnras/stw1323

    Article  ADS  Google Scholar 

  36. A.R. Pullen, T.-C. Chang, O. Doré, A. Lidz, Cross-correlations as a cosmological carbon monoxide detector. Astrophys. J. 768, 15 (2013). https://doi.org/10.1088/0004-637X/768/1/15

    Article  ADS  Google Scholar 

  37. A.R. Pullen, O. Doré, J. Bock, Intensity mapping across cosmic times with the Ly\(\alpha\) line. Astrophys. J. 786, 111 (2014). https://doi.org/10.1088/0004-637X/786/2/111

    Article  ADS  Google Scholar 

  38. B. Reid, S. Ho, N. Padmanabhan, W.J. Percival, J. Tinker, R. Tojeiro, M. White, D.J. Eisenstein, C. Maraston, A.J. Ross, A.G. Sánchez, D. Schlegel, E. Sheldon, M.A. Strauss, D. Thomas, D. Wake, F. Beutler, D. Bizyaev, A.S. Bolton, J.R. Brownstein, C.-H. Chuang, K. Dawson, P. Harding, F.-S. Kitaura, A. Leauthaud, K. Masters, C.K. McBride, S. More, M.D. Olmstead, D. Oravetz, S.E. Nuza, K. Pan, J. Parejko, J. Pforr, F. Prada, S. Rodríguez-Torres, S. Salazar-Albornoz, L. Samushia, D.P. Schneider, C.G. Scóccola, A. Simmons, M. Vargas-Magana, SDSS-III baryon oscillation spectroscopic survey data release 12: galaxy target selection and large-scale structure catalogues. MNRAS 455, 1553–1573 (2016). https://doi.org/10.1093/mnras/stv2382

    Article  ADS  Google Scholar 

  39. M. Righi, C. Hernández-Monteagudo, R.A. Sunyaev, Carbon monoxide line emission as a CMB foreground: tomography of the star-forming universe with different spectral resolutions. Astron. Astrophys. 489, 489–504 (2008). https://doi.org/10.1051/0004-6361:200810199

    Article  ADS  Google Scholar 

  40. W. Rotman, R. Turner, Wide-angle microwave lens for line source applications. IEEE Trans. Antennas Propag. 11(6), 623–632 (1963)

    Article  ADS  Google Scholar 

  41. P. Shirron, E. Canavan, M. DiPirro, J. Francis, M. Jackson, J. Tuttle, T. King, M. Grabowski, Development of a cryogen-free continuous ADR for the constellation-X mission. Cryogenics 44, 581–588 (2004). https://doi.org/10.1016/j.cryogenics.2003.11.011

    Article  ADS  Google Scholar 

  42. J. Singal, D.J. Fixsen, A. Kogut, S. Levin, M. Limon, P. Lubin, P. Mirel, M. Seiffert, T. Villela, E. Wollack, C.A. Wuensche, The ARCADE 2 instrument. Astrophys. J. 730, 138 (2011). https://doi.org/10.1088/0004-637X/730/2/138

    Article  ADS  Google Scholar 

  43. E.R. Switzer, P.A.R. Ade, T. Baildon, D. Benford, C.L. Bennett, D.T. Chuss, R. Datta, J.R. Eimer, D.J. Fixsen, N.N. Gandilo, T.M. Essinger-Hileman, M. Halpern, G. Hilton, K. Irwin, C. Jhabvala, M. Kimball, A. Kogut, J. Lazear, L.N. Lowe, J.J. McMahon, T.M. Miller, P. Mirel, S.H. Moseley, S. Pawlyk, S. Rodriguez, E. Sharp, P. Shirron, J.G. Staguhn, D.F. Sullivan, P. Taraschi, C.E. Tucker, A. Walts, E.J. Wollack, Sub-Kelvin cooling for two kilopixel bolometer arrays in the PIPER receiver. Rev. Sci. Instrum. 90(9), 095104 (2019). https://doi.org/10.1063/1.5108649

    Article  ADS  Google Scholar 

  44. K. U-yen, E.J. Wollack. Compact planar microwave blocking filter, in Microwave Conference, 2008. EuMC 2008. 38th European (2008), pp. 642–645. https://doi.org/10.1109/EUMC.2008.4751534

  45. E. Visbal, A. Loeb, Measuring the 3D clustering of undetected galaxies through cross correlation of their cumulative flux fluctuations from multiple spectral lines. J. Cosmol. Astropart. Phys. 11, 016 (2010). https://doi.org/10.1088/1475-7516/2010/11/016

    Article  ADS  Google Scholar 

  46. A.B. Walter, C. Bockstiegel, B.A. Mazin, M. Daal, Laminated NbTi-on-Kapton microstrip cables for flexible sub-Kelvin RF electronics. IEEE Trans. Appl. Supercond. 28, 2500105 (2017). https://doi.org/10.1109/TASC.2017.2773836

    Article  ADS  Google Scholar 

  47. E.J. Wollack, D.T. Chuss, K. Rostem, K. Yen, Impedance matched absorptive thermal blocking filters. Rev. Sci. Instrum. 85(3), 034702 (2014). https://doi.org/10.1063/1.4869038

    Article  ADS  Google Scholar 

  48. S. Yang, A.R. Pullen, E.R. Switzer, Evidence for CII diffuse line emission at redshift \(z\sim 2.6\). MNRAS 489(1), L53–L57 (2019). https://doi.org/10.1093/mnrasl/slz126

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding provided by the NASA Astrophysics Research and Analysis (APRA) Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Switzer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ade, P.A.R., Anderson, C.J., Barrentine, E.M. et al. The Experiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM). J Low Temp Phys 199, 1027–1037 (2020). https://doi.org/10.1007/s10909-019-02320-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02320-5

Keywords

Navigation