Skip to main content
Log in

Microwave SQUID Multiplexer for Readout of Optical Transition Edge Sensor Array

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Photon imaging technology is applied in various research fields such as quantum information communication and biological imaging. We have been developing photon-counting devices using optical transition edge sensors (TES). We demonstrated a single-photon spectroscopic imaging system comprising an optical TES and a scanning microscope. However, a great number of TES pixels are required to increase the field of view in the imaging system. To read out the TES array, output signals need to be multiplexed. Microwave SQUID multiplexer (MW-Mux) is a kind of frequency multiplexing method with a carrier wave having a frequency of several GHz, and it can be used to widen the frequency band. In this paper, we report the first demonstration on readout of an optical TES with MW-Mux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K. Niwa et al., Sci. Rep. 6, 45660 (2017). https://doi.org/10.1038/srep45660

    Article  ADS  Google Scholar 

  2. D. Fukuda et al., J. Low Temp. Phys. 193, 1228–1235 (2018). https://doi.org/10.1007/s10909-018-1938-8

    Article  ADS  Google Scholar 

  3. J.N. Ullom, D.A. Bennett, Supercond. Sci. Technol. 28, 084003 (2015). https://doi.org/10.1088/0953-2048/28/8/084003

    Article  ADS  Google Scholar 

  4. W.B. Doriese et al., J. Low Temp. Phys. 184, 389–395 (2016). https://doi.org/10.1007/s10909-015-1373-z

    Article  ADS  Google Scholar 

  5. K.M. Morgan et al., Appl. Phys. Lett. 109, 112604 (2016). https://doi.org/10.1063/1.4962636

    Article  ADS  Google Scholar 

  6. L. Gottardi et al., Appl. Phys. Lett. 105, 162605 (2014). https://doi.org/10.1063/1.4899065

    Article  ADS  Google Scholar 

  7. H. Akamatsu et al., J. Low Temp. Phys. 184, 436–442 (2016). https://doi.org/10.1007/s10909-016-1525-9

    Article  ADS  Google Scholar 

  8. J.A.B. Mates et al., Appl. Phys. Lett. 92, 023514 (2008). https://doi.org/10.1063/1.2803852

    Article  ADS  Google Scholar 

  9. D.A. Bennett et al., J. Astron. Telesc. Instrum. Syst. 5, 021007 (2019). https://doi.org/10.1117/1.JATIS.5.2.021007

    Article  ADS  Google Scholar 

  10. Y. Nakashima et al., IEICE Electron. Express 14, 20170271 (2017). https://doi.org/10.1587/elex.14.20170271

    Article  Google Scholar 

  11. J.A.B. Mates et al., J. Low Temp. Phys. 167, 707–712 (2012). https://doi.org/10.1007/s10909-012-0518-6

    Article  ADS  Google Scholar 

  12. A.J. Miller et al., Opt. Express 19, 9102–9110 (2011). https://doi.org/10.1364/OE.19.009102

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by JST-CREST Grant Number JPMJCR17N4, Japan. MW-Mux chips were fabricated in CRAVITY (Cleanroom for analogue digital superconductivity) in AIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Nakada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakada, N., Hattori, K., Nakashima, Y. et al. Microwave SQUID Multiplexer for Readout of Optical Transition Edge Sensor Array. J Low Temp Phys 199, 206–211 (2020). https://doi.org/10.1007/s10909-019-02298-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02298-0

Keywords

Navigation