Skip to main content
Log in

Multilayer Etched Antireflective Structures for Silicon Vacuum Windows

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Future instruments employing cryogenic detectors for millimeter and submillimeter astronomy applications can benefit greatly from silicon vacuum windows with broadband antireflection treatment. Silicon is an ideal optical material at these wavelengths due to numerous attractive properties, including low loss, high refractive index, and high strength. However, its high index (\(n=3.4\)) necessitates antireflection (AR) treatment, which has proven a major challenge, especially for the multilayer treatments required for wide spectral bandwidths. We address this challenge by developing a wide-bandwidth integral AR structure for silicon vacuum windows using a novel fabrication technique, tuning the effective refractive index of each AR layer using deep reactive ion etching (DRIE) and using wafer bonding to assemble the structure. We present the progress we have made in designing and fabricating such vacuum windows from 100-mm-diameter silicon wafers. We have previously demonstrated a two-layer AR structure for windows over a 1.6:1 bandwidth and are currently fabricating a four-layer coating designed for a 4:1 bandwidth. We have also converged on a design for a six-layer structure optimized to give − 20 dB reflection between 80 and 420 GHz (5.25:1 bandwidth), which will be useful for future multicolor Sunyaev–Zel’dovich (SZ) observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Datta, C.D. Munson, M.D. Niemack, J.J. McMahon, J. Britton, E.J. Wollack, J. Beall, M.J. Devlin, J. Fowler, P. Gallardo, J. Hubmayr, K. Irwin, L. Newburgh, J.P. Nibarger, L. Page, M.A. Quijada, B.L. Schmitt, S.T. Staggs, R. Thornton, L. Zhang, Appl. Opt. 52, 8747 (2013). https://doi.org/10.1364/AO.52.008747

    Article  ADS  Google Scholar 

  2. M. H. Abitbol, Z. Ahmed, D. Barron, R. Basu Thakur, A.N. Bender, B.A. Benson, C.A. Bischoff, S.A. Bryan, J.E. Carlstrom, C.L. Chang, D.T. Chuss, K.T. Crowley, A. Cukierman, T. de Haan, M. Dobbs, T. Essinger-Hileman, J.P. Filippini, K. Ganga, J.E. Gudmundsson, N.W. Halverson, S. Hanany, S.W. Henderson, C.A. Hill, S.- P.P. Ho, J. Hubmayr, K. Irwin, O. Jeong, B.R. Johnson, S.A. Kernasovskiy, J.M. Kovac, A. Kusaka, A.T. Lee, S. Maria, P. Mauskopf, J.J. McMahon, L. Moncelsi, A.W. Nadolski, J.M. Nagy, M.D. Niemack, R.C. O’Brient, S. Padin, S.C. Parshley, C. Pryke, N.A. Roe, K. Rostem, J. Ruhl, S.M. Simon, S.T. Staggs, A. Suzuki, E.R. Switzer, O. Tajima, K.L. Thompson, P. Timbie, G.S. Tucker, J.D. Vieira, A.G. Vieregg, B. Westbrook, E.J. Wollack, K.W. Yoon, K.S. Young, E.Y. Young, CMB-S4 Technology Book, First Edition. ArXiv e-prints, (2017), arXiv:1706.02464v2

  3. K. Young, Q. Wen, S. Hanany, H. Imada, J. Koch, T. Matsumura, O. Suttmann, V. Schütz, J. Appl. Phys. 121, 213103 (2017). https://doi.org/10.1063/1.4984892

    Article  ADS  Google Scholar 

  4. T. Nitta, S. Sekiguchi, Y. Sekimoto, K. Mitsui, N. Okada, K. Karatsu, M. Naruse, M. Sekine, H. Matsuo, T. Noguchi, M. Seta, N. Nakai, J. Low Temp. Phys. 176, 677 (2014). https://doi.org/10.1007/s10909-013-1059-3

    Article  ADS  Google Scholar 

  5. T.-H. Her, R.J. Finlay, C. Wu, S. Deliwala, E. Mazur, Appl. Phys. Lett. 73, 1673 (1998). https://doi.org/10.1063/1.122241

    Article  ADS  Google Scholar 

  6. C.Y. Drouet d’Aubigny, C.K. Walker, B.D. Jones, Proc. SPIE 4557, 101–110 (2001). https://doi.org/10.1117/12.442932

    Article  ADS  Google Scholar 

  7. T. Matsumura, K. Young, Q. Wen, S. Hanany, H. Ishino, Y. Inoue, M. Hazumi, J. Koch, O. Suttman, V. Schütz, Appl. Opt. 55, 3502 (2016). https://doi.org/10.1364/AO.55.003502

    Article  ADS  Google Scholar 

  8. T.-Y. Yu, N.-C. Chi, H.-C. Tsai, S.-Y. Wang, C.-W. Luo, K.-N. Chen, Opt. Lett. 42, 4917 (2017). https://doi.org/10.1364/OL.42.004917

    Article  ADS  Google Scholar 

  9. A. Wagner-Gentner, U.U. Graf, D. Rabanus, K. Jacobs, Infrared Phys. Technol. 48, 249 (2006). https://doi.org/10.1016/j.infrared.2006.01.004

    Article  ADS  Google Scholar 

  10. T. Wada, H. Makitsubo, M. Mita, Appl. Phys. Express 3, 102503 (2010). https://doi.org/10.1143/APEX.3.102503

    Article  ADS  Google Scholar 

  11. K.-F. Schuster, N. Krebs, Y. Guillaud, F. Mattiocco, M. Kornberg, A. Poglitsch, in Sixteenth International Symposium on Space Terahertz Technology (2005), pp. 524–528

  12. J.D. Wheeler, B. Koopman, P. Gallardo, P.R. Maloney, S. Brugger, G. Cortes-Medellin, R. Datta, C.D. Dowell, J. Glenn, S. Golwala, C. McKenney, J.J. McMahon, C.D. Munson, M. Niemack, S. Parshley, G. Stacey, Proc. SPIE 9153, 91532Z (2014). https://doi.org/10.1117/12.2057011

    Article  ADS  Google Scholar 

  13. Y.W. Chen, X.-C. Zhang, Front. Optoelectron. 7, 243 (2014). https://doi.org/10.1007/s12200-013-0377-z

    Article  Google Scholar 

  14. C. Jung-Kubiak, T.J. Reck, J.V. Siles, C. Lee, J. Gill, I. Mehdi, G. Chattopadhyay, IEEE Trans. Terahertz Sci. Technol. 6, 690 (2016). https://doi.org/10.1109/TTHZ.2016.2593793

    Article  Google Scholar 

  15. F. Defrance, C. Jung-Kubiak, J. Sayers, J. Connors, C. deYoung, M.I. Hollister, H. Yoshida, G. Chattopadhyay, S.R. Golwala, S.J.E. Radford, Appl. Opt. 57, 5196 (2018). https://doi.org/10.1364/AO.57.005196

    Article  ADS  Google Scholar 

  16. P.A. Gallardo, B.J. Koopman, N.F. Cothard, S.M.M. Bruno, G. Cortes-Medellin, G. Marchetti, K.H. Miller, B. Mockler, M.D. Niemack, G. Stacey, E.J. Wollack, Appl. Opt. 56, 2796 (2017). https://doi.org/10.1364/AO.56.002796

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by a NASA Space Technology Research Fellowship. This work was also supported by a NASA APRA Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Macioce.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macioce, T., Defrance, F., Jung-Kubiak, C. et al. Multilayer Etched Antireflective Structures for Silicon Vacuum Windows. J Low Temp Phys 199, 935–942 (2020). https://doi.org/10.1007/s10909-019-02294-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02294-4

Keywords

Navigation