Skip to main content
Log in

HUBS: Hot Universe Baryon Surveyor

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Hot Universe Baryon Surveyor (HUBS) is proposed in China as a major X-ray mission for the next decade. It is designed to be highly focused scientifically, with two primary objectives: (1) detecting X-ray emission from hot baryons in intergalactic medium and circumgalactic medium (CGM), and characterizing their physical and chemical properties; (2) studying, based on the observations, the accretion and feedback processes that are thought to be highly relevant to the heating and chemical enrichment of the baryons in the CGM. Because of very low densities, the signal is expected to be very weak and thus technically difficult to detect. On the other hand, the spectrum of the emission is expected to be line rich, so it would be effective for detecting the hot baryons in bright emission lines. For that, an instrument with high spectral resolution, large effective area and large field of view (FoV) would be required. HUBS will couple a TES-based X-ray imaging spectrometer to a large FoV X-ray telescope to satisfy these requirements. A preliminary design of HUBS is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. https://www.tng-project.org.

  2. Based on information at: https://www.the-athena-x-ray-observatory.eu/resources/gallery/x-ifu.html.

  3. HUBS web site: https://hubs.phys.tsinghua.edu.cn/en/.

References

  1. M. Fukugita, C.J. Hogan, P.J.E. Peebles, Astrophys. J. 503, 518 (1998). https://doi.org/10.1086/306025

    Article  ADS  Google Scholar 

  2. R. Cen, J.P. Ostriker, Astrophys. J. 519, L109 (1999). https://doi.org/10.1086/312123

    Article  ADS  Google Scholar 

  3. R. Dave, R. Cen, J.P. Ostriker et al., Astrophys. J. 552, 473 (2001). https://doi.org/10.1086/320548

    Article  ADS  Google Scholar 

  4. R.A.C. Croft, T. Di Matteo, R. Dave et al., Astrophys. J. 557, 67 (2001). https://doi.org/10.1086/321632

    Article  ADS  Google Scholar 

  5. J.M. Shull, B.D. Smith, C.W. Danforth, Astrophys. J. 759, 23 (2012). https://doi.org/10.1088/0004-637X/759/1/23

    Article  ADS  Google Scholar 

  6. T. Fang, D. Buote, J. Bullock, R. Ma, Astrophys. J. Suppl. 217, 21 (2015). https://doi.org/10.1088/0067-0049/217/2/21

    Article  ADS  Google Scholar 

  7. F. Nicastro, J. Kaastra, Y. Krongold et al., Nature 558, 406 (2018). https://doi.org/10.1038/s41586-018-0204-1

    Article  ADS  Google Scholar 

  8. H. Tanimura, N. Aghanim, M. Douspis et al., Astron. Astrophys. 625, 67 (2019). https://doi.org/10.1051/0004-6361/201833413

    Article  ADS  Google Scholar 

  9. S.H. Lim, H.J. Mo, H. Wang, X. Yang, Mon. Not. R. Astron. Soc. 480, 4017 (2018). https://doi.org/10.1093/mnras/sty2126

    Article  ADS  Google Scholar 

  10. R.C. Hickox, M. Markevitch, Astrophys. J. 661, L117 (2007). https://doi.org/10.1086/519003

    Article  ADS  Google Scholar 

  11. R.C. Hickox, M. Markevitch, Astrophy. J. 645, 95 (2006). https://doi.org/10.1086/504070

    Article  ADS  Google Scholar 

  12. Y. Takei, E. Ursino, E. Branchini et al., Astrophys. J. 734, 91 (2011). https://doi.org/10.1088/0004-637X/734/2/91

    Article  ADS  Google Scholar 

  13. F. Pajot, D. Barret, T. Lam-Trong et al., J. Low Temp. Phys. 193, 901 (2018). https://doi.org/10.1007/s10909-018-1904-5

    Article  ADS  Google Scholar 

  14. L. Chen, X. Wu, J. Wang et al. Cryogenics 94, 103 (2018). https://doi.org/10.1016/j.cryogenics.2018.08.002

    Article  ADS  Google Scholar 

  15. C. Pan, J. Wang, K. Luo et al., Cryogenics 98, 71 (2019). https://doi.org/10.1016/j.cryogenics.2019.01.004

    Article  ADS  Google Scholar 

  16. J. Wang, C. Pan, T. Zhang et al., Sci. Bull. J. 64, 219 (2019)

    Article  Google Scholar 

  17. H. Wolter, Ann. Phys. 10, 94 (1952)

    Article  Google Scholar 

  18. Y. Liao, Z. Shen, J. Yu et al., J. Astron. Telesc. Instrum. Syst. 5(2), 024005 (2019)

    Article  ADS  Google Scholar 

  19. Z. Wang, Y. Liao, Z. Shen et al., J. Astron. Telesc. Instrum. Syst. 5(4), 044010 (2019)

    Article  ADS  Google Scholar 

  20. Y. Liao, Z. Shen, J. Yu et al., Res. Astron. Astrophys. 19(12), 172 (2019). https://doi.org/10.1088/1674-4527/19/12/172

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge useful discussions with Joel Bregman, Taotao Fang, Jan-Willem den Herder, Li Ji, Dan McCammon, Kazuhisa Mitsuda, Houjun Mo, Joop Shaye, Aurora Simionescu, Daniel Wang, Dandan Xu, and many members of the HUBS SWGs. The early study and development of HUBS is supported by the Chinese Academy of Sciences through Grant XDA15010400. WC wishes to acknowledge additional support from the National Natural Science Foundation of China through Grants 11927805 and 11821303, and from the National Key R&D Program of China through Grant 2018YFA0404502.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Cui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, W., Chen, LB., Gao, B. et al. HUBS: Hot Universe Baryon Surveyor. J Low Temp Phys 199, 502–509 (2020). https://doi.org/10.1007/s10909-019-02279-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02279-3

Keywords

Navigation