Skip to main content
Log in

Low-Frequency Dynamics and Its Correlation of Nanoscale Structures in Amorphous Solids

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Unlike the crystalline solids, the atomic arrangements in amorphous solids lack long-range translational and orientational order. Despite intense research activity on their structures, the details of how the atoms are packed in amorphous solids remain mysterious at present. Here, we propose a structure feature like polymers and estimate the nanoscale of short-range order (SRO) and medium-range order (MRO) in this description according to the boson peak in amorphous solids. The result supports the concepts that (a) the low-frequency local vibrations are defined by the characteristic length of nanoscale clusters and (b) a decisive scale correlation of solvent atoms, SRO and MRO is about 1:3:7 in amorphous solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. Duwez et al., J. Appl. Phys. 31, 1136 (1960)

    ADS  Google Scholar 

  2. W.L. Johnson, Prog. Mater Sci. 30, 81 (1986)

    Google Scholar 

  3. A. Inoue et al., Nat. Mater. 2, 661 (2003)

    ADS  Google Scholar 

  4. Y.Q. Cheng, E. Ma, H.W. Sheng, Phys. Rev. Lett. 102, 245501 (2009)

    ADS  Google Scholar 

  5. D. Ma, A.D. Stoica, X.-L. Wang, Nat. Mater. 8, 30 (2009)

    ADS  Google Scholar 

  6. T. Fujita et al., Phys. Rev. Lett. 103, 075502 (2009)

    ADS  Google Scholar 

  7. K.X. Xi et al., Phys. Rev. Lett. 99, 095501 (2007)

    ADS  Google Scholar 

  8. J.D. Berbal, Nature 185, 68 (1960)

    ADS  Google Scholar 

  9. P.H. Gaskell, Nature 276, 484 (1978)

    ADS  Google Scholar 

  10. D.B. Miracle, Nat. Mater. 3, 697 (2004)

    ADS  Google Scholar 

  11. H.W. Sheng et al., Nature 439, 419 (2006)

    ADS  Google Scholar 

  12. D. Ma et al., Phys. Rev. Lett. 108, 085501 (2012)

    ADS  Google Scholar 

  13. W.H. Wang, J. Appl. Phys. 111, 123519 (2012)

    ADS  Google Scholar 

  14. B. Ruta et al., Phys. Rev. Lett. 109, 165701 (2012)

    ADS  Google Scholar 

  15. T. Uchino, T. Yoko, J. Chem. Phys. 108, 8130 (1998)

    ADS  Google Scholar 

  16. V.K. Malinovsky et al., Europhys. Lett. 11, 43 (1990)

    ADS  Google Scholar 

  17. W.M. Yang et al., J. App. Phys. 116, 123512 (2014)

    ADS  Google Scholar 

  18. N. Jakse, A. Nassour, A. Pasturel, Phys. Rev. B 85, 174201 (2012)

    ADS  Google Scholar 

  19. S.R. Elliott, Europhys. Lett. 19, 201 (1992)

    ADS  Google Scholar 

  20. A.P. Sokolov et al., Phys. Rev. Lett. 69, 1540 (1992)

    ADS  Google Scholar 

  21. M.B. Tang et al., Appl. Phys. Lett. 86, 021910 (2005)

    ADS  Google Scholar 

  22. A.N. Vasiliev et al., Phys. Rev. B 80, 172102 (2009)

    ADS  Google Scholar 

  23. M.B. Tang, H.Y. Bai, W.H. Wang, Phys. Rev. B 72, 012202 (2005)

    ADS  Google Scholar 

  24. Z.X. Wang, B. Sun, J.B. Lu, Trans. Nonferrous Met. Soc. China 21, 1309 (2011)

    Google Scholar 

  25. H.S. Chen, W.H. Haemmerle, J. Non-Cryst. Solids 11, 161 (1972)

    ADS  Google Scholar 

  26. A.P. Sokolov et al., Phys. Rev. Lett. 78, 2405 (1997)

    ADS  Google Scholar 

  27. A.V. Granato, Phys. B 219–220, 270 (1996)

    ADS  Google Scholar 

  28. Z.H. Zhou et al., Appl. Phys. Lett. 89, 031924 (2006)

    ADS  Google Scholar 

  29. Y. Li et al., J. Appl. Phys. 104, 013520 (2008)

    ADS  Google Scholar 

  30. Y. Li et al., Phys. Rev. B 74, 052201 (2006)

    ADS  Google Scholar 

  31. A. Meyer et al., Phys. Rev. B 53, 12107 (1996)

    ADS  Google Scholar 

  32. V. Keppens et al., Nature 395, 876 (1998)

    ADS  Google Scholar 

  33. C. Kittel, Introduction to Solid State Physics, 8th edn. (Beijing, Beijing, 2005), p. 86. Chinese Ed.

    Google Scholar 

  34. B. Golding, B.G. Bagley, F.S.L. Hsu, Phys. Rev. Lett. 29, 68 (1972)

    ADS  Google Scholar 

  35. J.G. Speight, Lang’s Handbook of Chemistry, 16th edn. (Mc Graw-Hill, London, 2005), p. 1.151

    Google Scholar 

  36. W.H. Wang, Nat. Mater. 11, 275 (2012)

    ADS  Google Scholar 

  37. G. Li et al., Phys. Rev. Lett. 109, 125501 (2012)

    ADS  Google Scholar 

  38. A. Takeuchi, A. Inoue, Mater. Trans. 46, 2817 (2005)

    Google Scholar 

  39. J.E. Graebner, B. Golding, L.C. Allen, Phys. Rev. B 34, 5696 (1986)

    ADS  Google Scholar 

  40. A. Hirata et al., Nat. Mater. 10, 28 (2011)

    ADS  Google Scholar 

  41. X.J. Liu et al., Phys. Rev. Lett. 105, 155501 (2010)

    ADS  Google Scholar 

  42. Y. Suzuki, J. Haimovich, T. Egami, Phys. Rev. B 35, 2162 (1987)

    ADS  Google Scholar 

  43. A.S. Ahmad et al., J. Low Temp. Phys. 186, 172 (2017)

    ADS  Google Scholar 

  44. S.R. Elliott, Nature 354, 445 (1991)

    ADS  Google Scholar 

  45. F. Leonforte et al., Phys. Rev. B 72, 224206 (2005)

    ADS  Google Scholar 

  46. H. Mizuno, S. Mossa, J.-L. Barrat, Europhys. Lett. 104, 56001 (2013)

    ADS  Google Scholar 

  47. E. Lerner, G. During, E. Bouchbinder, Phys. Rev. Lett. 117, 035501 (2016)

    ADS  Google Scholar 

  48. M. Baity-Jesi et al., Phys. Rev. Lett. 115, 267205 (2015)

    ADS  Google Scholar 

  49. E. Lerner, G. During, SciPost. Phys. 1, 016 (2016)

    ADS  Google Scholar 

  50. H. Mizuno, H. Shiba, A. Ikeda, Proc. Natl. Acad. Sci. U.S.A. 114, E9767 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would thank the reviewers for their valuable comments and suggestions on this paper. This work was supported by the National Natural Science Foundation of China (Nos. 51871237, 51631003 and 51771217), and Xuzhou Key Research & Development Program (KC17015). We thank V. A. Khonik of State Pedagogical University, W. H. Wang and M. B. Tang of Chinese Academy of Sciences for providing the specific heat data of Pd41.25Cu41.25P17.5, Cu50Zr50 and Zr46.75Ti8.25Cu7.5Ni10Be27.5 metallic glasses, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juntao Huo or Haishun Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Li, W., Jiang, Q. et al. Low-Frequency Dynamics and Its Correlation of Nanoscale Structures in Amorphous Solids. J Low Temp Phys 198, 158–166 (2020). https://doi.org/10.1007/s10909-019-02268-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02268-6

Keywords

Navigation