Skip to main content
Log in

Development of Microwave Kinetic Inductance Detectors for IR Single-Photon Counting

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We have developed microwave kinetic inductance detectors suitable for near-IR single-photon counting. Our films are made of titanium and titanium nitride, deposited in a multilayer structure Ti/TiN/Ti/TiN with a total thickness of 44 nm. The film has a transition temperature of 1.2 K and a surface kinetic inductance of 34 pH/sq. The resonator was designed with lumped elements and consists of two blocks of interdigitated capacitors connected by a meandered stripe inductor. The resonator resonance frequency is 6.8 GHz, and the internal quality factor is 125,000. The detector is read out with the usual homodyne scheme and calibrated with light pulses produced by a laser diode with wavelength 1550 nm. For the 0- and 1-photon peaks, we measure a FWHM energy resolution of 0.44 eV and 0.56 eV, respectively. This resolution is sufficient to resolve events with up to 4 photons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P.K. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, J. Zmuidzinas, Nature 425, 817 (2003). https://doi.org/10.1038/nature02037

    Article  ADS  Google Scholar 

  2. J. Zmuidzinas, Annu. Rev. Condens. Matter Phys. 3, 169 (2012). https://doi.org/10.1146/annurev-conmatphys-020911-125022

    Article  Google Scholar 

  3. J. Gao, M.R. Vissers, M.O. Sandberg, F.C.S. da Silva, S.W. Nam, D.P. Pappas, D.S. Wisbey, E.C. Langman, S.R. Meeker, B.A. Mazin, H.G. Leduc, J. Zmuidzinas, K.D. Irwin, Appl. Phys. Lett. 101, 142602 (2012). https://doi.org/10.1063/1.4756916

    Article  ADS  Google Scholar 

  4. W. Guo, X. Liu, Y. Wang, Q. Wei, L.F. Wei, J. Hubmayr, J. Fowler, J. Ullom, L. Vale, M.R. Vissers, J. Gao, Appl. Phys. Lett. 110, 212601 (2017). https://doi.org/10.1063/1.4984134

    Article  ADS  Google Scholar 

  5. A. Giachero, P. Day, P. Falferi, M. Faverzani, E. Ferri, C. Giordano, B. Margesin, F. Mattedi, R. Mezzena, R. Nizzolo, A. Nucciotti, J. Low Temp. Phys. 176, 155 (2014). https://doi.org/10.1007/s10909-013-1078-0

    Article  ADS  Google Scholar 

  6. B.A. Mazin, B. Bumble, S.R. Meeker, K. O’Brien, S. McHugh, E. Langman, Opt. Express 20, 1503 (2012). https://doi.org/10.1364/OE.20.001503

    Article  ADS  Google Scholar 

  7. M. Jönsson, G. Björk, Phys. Rev. A 99, 043822 (2019). https://doi.org/10.1103/PhysRevA.99.043822

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is carried out in the framework of the KIDS R&D project funded by the Istituto Nazionale di Fisica Nucleare (INFN), Italy, in the Commissione Scientifica Nazionale 5 (CSN5). We acknowledge G. Fontana for his valuable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mezzena.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezzena, R., Faverzani, M., Ferri, E. et al. Development of Microwave Kinetic Inductance Detectors for IR Single-Photon Counting. J Low Temp Phys 199, 73–79 (2020). https://doi.org/10.1007/s10909-019-02251-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02251-1

Keywords

Navigation