Skip to main content
Log in

A Robust Principal Component Analysis for Outlier Identification in Messy Microcalorimeter Data

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A principal component analysis (PCA) of clean microcalorimeter pulse records can be a first step beyond statistically optimal linear filtering of pulses toward a fully nonlinear analysis. For PCA to be practical on spectrometers with hundreds of sensors, an automated identification of clean pulses is required. Robust forms of PCA are the subject of active research in machine learning. We examine a version known as coherence pursuit that is simple and fast and well matched to the automatic identification of outlier records, as needed for microcalorimeter pulse analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Outlier pursuit thus relies on the Anna Karenina principle: Clean pulse records are all alike; every unclean record is unclean in its own way.

References

  1. S.H. Moseley, J.C. Mather, D.J. McCammon, J. Appl. Phys. 56, 1257 (1984). https://doi.org/10.1063/1.334129

    Article  ADS  Google Scholar 

  2. A.E. Szymkowiak, R.L. Kelley, S.H. Moseley, C.K. Stahle, J. Low Temp. Phys. 93, 281 (1993). https://doi.org/10.1007/BF00693433

    Article  ADS  Google Scholar 

  3. B.K. Alpert, R.D. Horansky, D.A. Bennett et al., Rev. Sci. Instrum. 84, 6107 (2013). https://doi.org/10.1063/1.4806802

    Article  Google Scholar 

  4. S.R. Bandler, E. Figueroa-Feliciano, N. Iyomoto et al., Nucl. Instrum. Methods. Phys. Res. A 559, 817–819 (2006). https://doi.org/10.1016/j.nima.2005.12.149

    Article  ADS  Google Scholar 

  5. P. Peille, M.T. Ceballos, B. Cobo, et al. SPIE Astronom. Telescopes + Instr., 9905, 99055W–1 (2016). https://doi.org/10.1117/12.2232011

  6. C. Pappas, J.W. Fowler, D.A. Bennet et al., J. Low Temp. Phys, J. Low Temp. Phys. 193, 249 (2018). https://doi.org/10.1007/s10909-018-1999-8

    Article  ADS  Google Scholar 

  7. B. Shank, J.J. Yen, B. Cabrera et al., AIP Adv. 4, 117106 (2014). https://doi.org/10.1063/1.4901291

    Article  ADS  Google Scholar 

  8. J.W. Fowler, B.K. Alpert, W.B. Doriese et al., IEEE Trans. Appl. Supercond. 27, 2500404 (2017). https://doi.org/10.1109/TASC.2016.2637359

    Article  Google Scholar 

  9. D.J. Fixsen, S.H. Moseley, T. Gerrits, A.E. Lita, S.W. Nam, J. Low Temp. Phys. 176, 16–26 (2014). https://doi.org/10.1007/s10909-014-1149-x

    Article  ADS  Google Scholar 

  10. J.W. Fowler, C.G. Pappas, B.K. Alpert et al., J. Low Temp. Phys. 193, 539 (2018). https://doi.org/10.1007/s10909-018-1892-5

    Article  ADS  Google Scholar 

  11. S. Kempf, A. Fleischmann, L. Gastaldo, C. Enss, J. Low Temp. Phys. 193, 365 (2018). https://doi.org/10.1007/s10909-018-1891-6

    Article  ADS  Google Scholar 

  12. S.E. Busch, J.S. Adams, S.R. Bandler et al., J. Low Temp. Phys. 184, 382–388 (2016). https://doi.org/10.1007/s10909-015-1357-z

    Article  ADS  Google Scholar 

  13. D. Yan, T. Cecil, L. Gades et al., J. Low Temp. Phys. 184, 397–404 (2016). https://doi.org/10.1007/s10909-016-1480-5

    Article  ADS  Google Scholar 

  14. E.J. Candès, X. Li, Y. Ma, J. Wright, J. ACM 58, 11 (2011). https://doi.org/10.1145/1970392.1970395

    Article  Google Scholar 

  15. G.H. Golub, C.F. Van Loan, Matrix Computations, 4th edn. (Johns Hopkins, Baltimore, 2013)

    MATH  Google Scholar 

  16. R.M. Larsen, Lanczos bidiagonalization with partial reorthogonalization. DAIMI Rep. Ser. 27, 537 (1998). https://doi.org/10.7146/dpb.v27i537.7070

    Article  Google Scholar 

  17. R.M. Larsen, http://sun.stanford.edu/ rmunk/PROPACK/

  18. N. Halko, P.G. Martinsson, J.A. Tropp, SIAM Rev. 53, 217 (2011). https://doi.org/10.1137/090771806

    Article  MathSciNet  Google Scholar 

  19. T. Bouwmans, E.H. Zahzah, Comput. Vis. Image Underst. 122, 22 (2014). https://doi.org/10.1016/j.cviu.2013.11.009

    Article  Google Scholar 

  20. N. Vaswani, P. Narayanamurthy, Proc. IEEE 106, 1359 (2018). https://doi.org/10.1109/JPROC.2018.2844126

    Article  Google Scholar 

  21. G. Lerman, T. Maunu, Proc. IEEE 106, 1380 (2018). https://doi.org/10.1109/JPROC.2018.2853141

    Article  Google Scholar 

  22. N. Kwak, I.E.E.E. Trans, Pattern Anal. Mach. Intell. 30, 1672 (2008). https://doi.org/10.1109/TPAMI.2008.114

    Article  Google Scholar 

  23. F. Nie, H. Huang, C. Ding, D. Luo, H. Wang, in Proceedings of 22nd International Joint Conference on Artificial Intelligence (2011). https://bit.ly/2EVPGWu

  24. Y.W. Park, D. Klabjan, in IEEE 16th International Conference on Data Mining (2016). https://doi.org/10.1109/ICDM.2016.0054

  25. P.P. Markopoulos, S. Kundu, S. Chamadia, D.A. Pados, I.E.E.E. Trans, Signal Process. 65, 4252 (2017). https://doi.org/10.1109/TSP.2017.2708023

    Article  Google Scholar 

  26. F. Nie, H. Huang, “Non-greedy L21-norm maximization for Principal Component Analysis” (2016). arxiv:1603.08293

  27. H. Xu, C. Caramanis, IEEE Trans. Inf. Theory 58, 3047 (2012). https://doi.org/10.1109/TIT.2011.2173156

    Article  Google Scholar 

  28. M. Rahmani, G. Atia, I.E.E.E. Trans, Signal Process. 65, 6260 (2017). https://doi.org/10.1109/TSP.2017.2749215

    Article  Google Scholar 

  29. T. Cai, J. Fan, T. Jiang, J. Mach. Learn. Res. 14, 1837 (2013)

    MathSciNet  Google Scholar 

  30. V. Menon, S. Kalyani, I.E.E.E. Trans, Signal Process. 67, 2439 (2019). https://doi.org/10.1109/TSP.2019.2905826

    Article  Google Scholar 

  31. J.W. Fowler, B.K. Alpert, D.A. Bennett et al., Metrologia 54, 494 (2017). https://doi.org/10.1088/1681-7575/aa722f

    Article  ADS  Google Scholar 

  32. K.D. Irwin, G.C. Hilton, Cryogenic Particle Detection (Springer, Heidelberg, 2005), pp. 63–150. https://doi.org/10.1007/b12169

    Book  Google Scholar 

  33. J.W. Fowler, B.K. Alpert, W.B. Doriese et al., Astrophys. J. Suppl. 219, 35 (2015). https://doi.org/10.1088/0067-0049/219/2/35

    Article  ADS  Google Scholar 

  34. P.C. Mahalanobis, Proc. Natl. Inst. Sci. India 2, 49 (1936)

    Google Scholar 

Download references

Acknowledgements

This work was supported by NIST’s Innovations in Measurement Science program and by NASA SAT NNG16PT18I, “Enabling & enhancing technologies for a demonstration model of the Athena X-IFU.” We thank Dan Becker and Malcolm Durkin for numerous discussions and earlier work on pulse outlier identification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Fowler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fowler, J.W., Alpert, B.K., Joe, YI. et al. A Robust Principal Component Analysis for Outlier Identification in Messy Microcalorimeter Data. J Low Temp Phys 199, 745–753 (2020). https://doi.org/10.1007/s10909-019-02248-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02248-w

Keywords

Navigation