Irreversibility Line and Enhancement of Magnetic Flux Pinning in Sm-Doped Y123 Superconductor with CuO Nanoparticles

Abstract

Y1−xSmxBa2Cu3O7−∂ (x = 0.00, 0.01, 0.02 and 0.05 wt.%) samples with Nano-CuO have been prepared by the solid-state reaction method. The effects of Sm doped in the YBCO system with Nano-CuO (40 nm) on structural, critical temperature (Tc), irreversibility line (IL), critical current density, JC and flux line pinning force are investigated. We also measured magnetization as a function of temperature (M–T) and magnetic loops (M–H) at constant temperatures of 10, 20, 30, 40, 50 and 60 K up to 10 kG. XRD measurements show that all the sintered samples have orthorhombic structure. The sample with x = 0.01 wt.% Sm substituted for Y on YBCO superconductor improves the critical temperature more than that of the pure Y123 and the other samples. For this sample, the zero field-cooled and field-cooled magnetization as a function of temperature measurements reveals the shift of IL to higher temperatures and magnetic fields. The critical current density and flux pinning force calculated using the Bean’s critical state model indicate an enhancement of Jc and Fp for the Sm-doped x = 0.01 sample compared with the sample with x = 0.02 and even the pure Y123.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    J.G. Bednorz, K.A. Müller, Possible high T c superconductivity in the Ba–La–Cu–O system. Z. Phys. B 64, 189 (1986). https://doi.org/10.1007/bf01303701

    ADS  Article  Google Scholar 

  2. 2.

    Y. Xu, M. Suenaga, Y. Gao, J.E. Crow, N.D. Spencer, Irreversibility temperatures in c-axis-oriented powders of YBa2Cu3O7, Bi2Sr2CaCu2O8, and Bi2Sr2Ca2Cu3O10. Phys. Rev. B 42, 8756 (1990). https://doi.org/10.1103/PhysRevB.42.8756

    ADS  Article  Google Scholar 

  3. 3.

    J. Vanacken, E. Osquiguil, Y.B. Ruynseraede, Irreversibility line and critical currents in oxygen deficient YBa2Cu3Ox ceramics. Physica C 18, 163 (1991). https://doi.org/10.1016/0921-4534(91)90780-3

    ADS  Article  Google Scholar 

  4. 4.

    Y. Yeshurun, A.P. Malozeemoff, Giant Flux Creep and Irreversibility in a Y–Ba–Cu–O Crystal: an alternative to the superconducting-glass model. Phys. Rev. Lett. 60, 2202 (1988). https://doi.org/10.1103/PhysRevLett.60.2202

    ADS  Article  Google Scholar 

  5. 5.

    L. Civale, T.K. Worthington, A. Gupa, Thickness dependence of the irreversibility line in YBa2Cu3O7−x thin films. Phys. Rev. B 43, 5425 (1991). https://doi.org/10.1103/PhysRevB.43.5425

    ADS  Article  Google Scholar 

  6. 6.

    W. Kritscha, F.M. Sqverzopf, H.W. Weber, G.W. Grabtree, Y.C. Chang, P.Z. Jiang, Critical currents in superconductors for practical applications. Europhys. Lett. 12, 17999 (1990). https://doi.org/10.1142/3642

    Article  Google Scholar 

  7. 7.

    H. Zaleski, F.S. Razavi, Irreversibility-line study in the polycrystalline Bi2 Sr2 Ca Cu2 O8 superconductor. Phys. Rev. B 43, 1423 (1991). https://doi.org/10.1103/PhysRevB.43.11423

    Article  Google Scholar 

  8. 8.

    J.S. Munoz, M. Pont, T. Puig, Z.Z. Sheng, Y. Xin, D.X. Gun, D.O. Pederson, Effect of a bias field (up to 1 T) on the a. c. susceptibility of Cr0.3Tl1 Ba2Ca2Cu3Ox. Cryogenics 32, 1042 (1992). https://doi.org/10.1016/0011-2275(92)90024-5

    ADS  Article  Google Scholar 

  9. 9.

    M. Pont, T. Puig, J.S. Munoz, Z.Z. Sheng, Y. Xin, D.X. Gun, D.O. Pederson, Effect of Cr and V substitution on the properties of bulk Tl-based superconductors. Cryogenics 33, 91 (1993). https://doi.org/10.1016/0011-2275(93)90083-Z

    ADS  Article  Google Scholar 

  10. 10.

    M. Suenaga, A.K. Ghosh, Y. Xu, D.O. Welsh, Irreversibility temperatures of Nb3Sn and Nb-Ti. Phys. Rev. Lett. 66, 1777 (1991). https://doi.org/10.1103/PhysRevLett.66.1777

    ADS  Article  Google Scholar 

  11. 11.

    A.K. Grover, R. Kumar, S.K. Malik, P. Chaddah, V. Sankaranara Yahan, C.K. Subramanian, Quasi-irreversibility temperature in a type-I superconductor. Phys. Rev. B 43, 6151 (1991). https://doi.org/10.1103/PhysRevB.43.6151

    ADS  Article  Google Scholar 

  12. 12.

    J.F. Carolan, W.N. Hardy, R. Krahn, J.H. Brewer, R.C. Thompon, A.C.D. Chaklader, The superconducting glass transition in YBa2Cu3O7−σ. Solid State Commun. 64, 717–719 (1987). https://doi.org/10.1016/0038-1098(87)90686-7

    ADS  Article  Google Scholar 

  13. 13.

    R.H. Koch, V. Foghieti, W.J. Gallagher, G. Koren, A. Gupla, M.P.A. Fisher, Experimental evidence for vortex-glass superconductivity in Y-Ba–Cu–O. Phys. Rev. Lett. 63, 1511 (1989). https://doi.org/10.1103/PhysRevLett.63.1511

    ADS  Article  Google Scholar 

  14. 14.

    Y. Xu, M. Suenaga, Irreversibility temperatures in superconducting oxides: the flux-line-lattice melting, the glass-liquid transition, or the depinning temperatures. Phys. Rev. B 43, 5516 (1991). https://doi.org/10.1103/PhysRevB.43.5516

    ADS  Article  Google Scholar 

  15. 15.

    D.K. Finnemore, R.N. Shelton, J.R. Clem, R.W. McCallum, H.C. Ku, R.E. McCarly, S.C. Chen, P.K. Lavins, V. Kogan, Magnetization of superconducting lanthanum copper oxides. Phys. Rev. B 35, 5319 (1987). https://doi.org/10.1103/PhysRevB.35.5319

    ADS  Article  Google Scholar 

  16. 16.

    A.P. Malozemoff, T.K. Wortinglon, Y. Yeshurun, F. Holtzberg, Frequency dependence of the ac susceptibility in a Y–Ba–Cu–O crystal: a reinterpretation of Hc2. Phys. Rev. B 37, 7203 (1988). https://doi.org/10.1103/PhysRevB.38.7203

    ADS  Article  Google Scholar 

  17. 17.

    C.H. Heinzel, C.H. Neumann, P. Ziemann, Anisotropy of the irreversible magnetic behaviour of YBaCuO and TlBaCaCuO single crystals: a comparative a.c.-susceptibility study. Euro Phys. Lett. 13, 531 (1990). https://doi.org/10.1209/0295-5075/13/6/010

    ADS  Article  Google Scholar 

  18. 18.

    V. Skumryev, M.R. Koblischka, H. Kronmfüller, Sample size dependence of the AC-susceptibility of sintered YBa2Cu3O7−σ superconductors. Physica C 184, 332 (1991). https://doi.org/10.1016/0921-4534(91)90399-J

    ADS  Article  Google Scholar 

  19. 19.

    S. Ramarkrishnan, R. Kumar, P.L. Pavlose, A.K. Grover, P. Chaddah, Comparison of various methods to determine experimentally the irreversibility line in superconductors. Phys. Rev. B 44, 9514 (1991). https://doi.org/10.1103/PhysRevB.44.9514

    ADS  Article  Google Scholar 

  20. 20.

    A.F. Khoder, M. Couach, J.L. Jorda, Flux density in the mixed state in the high-T c superconductors and the predictions of Abrikosov theory. Phys. Rev. B 42, 8714 (1990). https://doi.org/10.1103/PhysRevB.42.8714

    ADS  Article  Google Scholar 

  21. 21.

    E.R. Yacoby, A. Shaulov, Y. Yeshurum, M. Konczykowski, F. Rulleir Albenque, Irreversibility line in YBa2Cu3O7 samples A comparison between experimental techniques and effect of electron irradiation. Physica C 199, 15 (1992). https://doi.org/10.1016/0921-4534(92)90534-J

    ADS  Article  Google Scholar 

  22. 22.

    J. Gilchrist, M. Konczykowski, AC screening measurement for the characterization of oxide superconductors, I. Application to ceramics. Physica C 168, 123 (1990). https://doi.org/10.1016/0921-4534(90)90114-T

    ADS  Article  Google Scholar 

  23. 23.

    A.F. Hebard, P.L. Gammel, C.E. Rice, A.F.J. Levi, Pair-breaking description of the vortex-depinssissg critical field in YBa2Cu3O7 thin. Phys. Rev. B 40, 5243 (1989). https://doi.org/10.1103/PhysRevB.40.5243

    ADS  Article  Google Scholar 

  24. 24.

    T. Wolf, I. Apfelstedt, W. Goldcker, H. Küpfer, R. Flükiger, Preparation and characterization of isotropic and textured YBa2Cu3O7−x with high density and low residual resistivity. Physica C 351, 153–155 (1988). https://doi.org/10.1016/0921-4534(88)90628-4

    Article  Google Scholar 

  25. 25.

    R.M. Hazen, L.W. Finger, R.J. Angel, C.T. Perwitt, N.L. Ross, H.K. Mao, C.G. Hadidiacos, P.H. Hor, R.L. Meng, C.W. Chu, Crystallographic description of phases in the Y–Ba–Cu–O superconductor. Phys. Rev. 335, 7238 (1987). https://doi.org/10.1103/PhysRevB.35.7238

    Article  Google Scholar 

  26. 26.

    M.B. Turkoz, S. Nezir, C. Terzioglu, A. Varilci, G. Yildirim, Investigation of Lu effect on YBa2Cu3O7−σ superconducting, compounds. J. Mater. Sci.: Mater. Electron. 24, 896–905 (2013). https://doi.org/10.1007/s10854-012-0846-y

    Article  Google Scholar 

  27. 27.

    B. Abeles, H.L. Pinch, J.I. Gittleman, Percolation conductivity in W-a1203 granular metal films. Phys. Rev. Lett. 35, 247 (1975). https://doi.org/10.1103/PhysRevLett.35.247

    ADS  Article  Google Scholar 

  28. 28.

    S.P.K. Naik, P.M.S. Raju, V. Seshubai, Role of Sm and Nb on the preform optimized infiltration growth processed YBCO superconductors. Mater. Chem. Phys. 182, 503–507 (2016). https://doi.org/10.1016/j.matchemphys.2016.07.064

    Article  Google Scholar 

  29. 29.

    K.A. Müller, M. Takashige, J.G. Bednorz, Flux trapping and superconductive glass state in La2CuO4−y: Ba. Phys. Rev. Lett. 58, 1143 (1987). https://doi.org/10.1103/PhysRevLett.58.1143

    ADS  Article  Google Scholar 

  30. 30.

    M. Cai, M.H. Fang, X.J. Zhang, Z.K. Jiao, Q.R. Zhang, X.S. Rong, B.R. Zhao, Investigations on flux creep and J c (T,B) behavior in Y1−xEuxBa2Cu3O7−σ. Phys. State. Sol. (a) 147, 221 (1995). https://doi.org/10.1002/pssa.2211470123

    ADS  Article  Google Scholar 

  31. 31.

    Z.D. Yakinci, D.M. Gokhfed, E. Altin, F. Kurt, S. Altin, D. Demirel, M.A. Aksan, M.E. Yakinci, Jc enhancement and flux pinning of Se substituted YBCO compound. J. Mater. Sci. 24, 4790 (2013). https://doi.org/10.1007/s10854-013-1476-8

    Article  Google Scholar 

  32. 32.

    P.L. Gammel, L.F. Schneemeyer, J.V. Waszczak, D.J. Bishop, Evidence from mechanical measurements for flux-lattice melting in single-crystal YBa2Cu3O7 and Bi2.2Sr2Ca0.8Cu2O8. Phys. Rev. Lett. 61, 1661 (1988). https://doi.org/10.1103/PhysRevLett.61.1666

    ADS  Article  Google Scholar 

  33. 33.

    D.S. Fisher, M.P.A. Fisher, D.A. Huse, Thermal fluctuations, quenched disorder, phase transitions, and transport in type-II superconductors. Phys. Rev. B 43, 130 (1991). https://doi.org/10.1103/PhysRevB.43.130

    ADS  Article  Google Scholar 

  34. 34.

    P. Esquinazi, A. Gupta, H.F. Braun, The depinning line of a Y (Gd) Ba2Cu3Ox single crystal. Phys. B 165, 1151 (1990). https://doi.org/10.1016/S0921-4526(09)80161-0

    ADS  Article  Google Scholar 

  35. 35.

    J.R.L. de Almeida, D.J. Thouless, Stability of the Sherrington-Kirkpatrick solution of a spin glass model. J. Phys. A 11, 983 (1978). https://doi.org/10.1088/0305-4470/11/5/028

    ADS  Article  Google Scholar 

  36. 36.

    M. Tinkham, resistive transition of high-temperature superconductors. Phys. Rev. Lett. 61, 1658 (1988). https://doi.org/10.1103/PhysRevLett.61.1658

    ADS  Article  Google Scholar 

  37. 37.

    A. Öztürka, İ. Düzgünb, S. Çlebi, The effect of partial Lu doping on magnetic behaviour of YBCO (123) superconductors. J. Alloys Compd. 495, 104–107 (2010). https://doi.org/10.1016/j.jallcom.2010.01.095

    Article  Google Scholar 

  38. 38.

    C.P. Bean, Magnetization of hard superconductors. Phys. Rev. Lett. 8, 250–253 (1962). https://doi.org/10.1103/PhysRevLett.8.250

    ADS  Article  MATH  Google Scholar 

  39. 39.

    A. Schmehl, B. Goetz, R.R. Schuls, C.W. Schneider, H. Bielefeldt, H. Hilgenkamp, J. Mannhart, Doping-induced enhancement of the critical currents of grain boundaries in YBa2Cu3O7−δ. Euophys. Lett. 47, 110–115 (1999). https://doi.org/10.1209/epl/i1999-00359-2

    ADS  Article  Google Scholar 

  40. 40.

    G. Hammerl, A. Schmehl, R.R. Schulz, B. Goetz, H. Bielefeldt, C.W. Schneider, H. Hilgenkamp, J. Mannhart, J. Mannhart, Enhanced supercurrent density in polycrystalline YBa2Cu3O7−σ at 77 K from calcium doping of grain boundaries. Nature 407, 162–164 (2000). https://doi.org/10.1038/35025014

    ADS  Article  Google Scholar 

  41. 41.

    B.A. Malik, M.A. Malik, K. Asokan, Enhancement of the critical current density in YBCO/Ag composites. Chin. J. Phys. 55, 170–175 (2017). https://doi.org/10.1016/j.cjph.2016.10.015

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Raheleh Hajilou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hajilou, R., Sedghi Gamchi, H. Irreversibility Line and Enhancement of Magnetic Flux Pinning in Sm-Doped Y123 Superconductor with CuO Nanoparticles. J Low Temp Phys 198, 70–89 (2020). https://doi.org/10.1007/s10909-019-02244-0

Download citation

Keywords

  • High-T c superconductors
  • Scanning electron microscopy
  • X-ray scattering
  • Irreversibility line
  • Critical current density