Skip to main content
Log in

Argon Annealing and Oxygen Purity Affect Structural and Critical Parameters of YBCO Copper Oxide System

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We report here the effects of argon annealing on the structural and critical parameters of oxygenated copper oxide system with different oxygen purities (Hp 99.99% and Lp 93%). It is found that the structure of the samples maintains orthorhombic single phase independent of both oxygen purity and annealing. The mean field temperature Tcmf is increased by annealing from 92 to 94 K for Lp sample, but it is decreased from 93 to 90 K for Hp sample. Similar behavior is obtained for crossover temperatures To. Further, the coherence length and interlayer coupling are decreased by annealing for both samples, and their values are higher for Lp samples than those for Hp samples. The excess conductivity analysis reveals two different exponents corresponding to crossover temperature for each plot: The first exponent is obtained in the normal field region at a temperature range of ln ε (0 ≥ ln ε ≥  − 2), and their values are 1.50, 1.53, 1.62 and 1.47 for both samples, in which the order parameter dimensionality (OPD) is one dimension, while the second exponent is obtained in the mean field region at a temperature range of ln ε (− 2 ≥ ln ε ≥  − 4), and their values are 0.39, 0.59, 0.56 and 0.41 for both samples, in which the OPD is 3D. Although the critical temperatures are decreased by annealing for both samples, the critical fields and critical currents are increased by annealing for both samples and their values are higher for Hp sample than those for Lp sample. Our results are discussed in terms of oxygen vacancies and concentration of carriers which are produced by annealing and oxygen purity for the considered samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.K. Ghosh, S.K. Bandyopadhyay, P. Barat, P. Sen, A.N. Basu, Phys C 255, 319 (1995)

    ADS  Google Scholar 

  2. A.K. Ghosh, A.N. Basu, Supercond. Sci. Technol. 13, 343 (2000)

    ADS  Google Scholar 

  3. N.A. Khan, N. Hassan, S. Nawaz, B. Shabbir, S. Khan, A.A. Rizvi, J. Appl. Phys. 107, 083910 (2010)

    ADS  Google Scholar 

  4. A.K. Ghosh, S.K. Bandyopadhyay, A.N. Basu, Mod. Phys. Lett. B 11, 1013 (1997)

    ADS  Google Scholar 

  5. D.S. Fisher, M.P.A. Fisher, D.A. Huse, Phys. Rev. B 43, 130 (1991)

    ADS  Google Scholar 

  6. F. Vidal, J.A. Veira, J. Maja, J.J. Ponte, F.G. Alvarado, E. Mordan, J. Amador, C. Cascales, Phys C 156, 807 (1988)

    ADS  Google Scholar 

  7. D.K. Aswal, A. Singh, S. Sen, M. Kaur, C.S. Viswandham, G.L. Goswami, S.K. Gupta, J. Phys. Chem. Solids 63, 1797 (2002)

    ADS  Google Scholar 

  8. M. Sahoo, D. Behera, J. Phys. Chem. Solids 74, 950 (2013)

    ADS  Google Scholar 

  9. A. Esmaeili, H. Sedghi, J. Alloys Compd. 537, 29 (2012)

    Google Scholar 

  10. E.M.M. Ibrahim, S.A. Saleh, Supercond. Sci. Technol. 20, 672 (2007)

    ADS  Google Scholar 

  11. M. Mumtaz, S.M. Hasnian, A.A. Khurram, N.A. Khan, J. Appl. Phys. 109, 023906 (2011)

    ADS  Google Scholar 

  12. A. Esmaeili, H. Sedghi, M. Amniat-Talab, M. Talebian, Eur. Phys. J. B 79, 443 (2011)

    ADS  Google Scholar 

  13. A. Sedky, J. Low Temp. Phys. 148, 53 (2007)

    ADS  Google Scholar 

  14. A. Sedky, P. Mohamed, Chin. Phys. B 22(11), 117401 (2013)

    ADS  Google Scholar 

  15. J.D. Jorgensen, D.G. Hinks, P.G. Radaeilli, S. Pei, P. Light-foot, B. Dabrowski, C.U. Segre, B.A. Hunter, Phys C 185, 184–189 (1991)

    ADS  Google Scholar 

  16. F. Yakhou, J.Y. Henry, P. Burlet, V.P. Plakhty, M. Vlasov, S. Moshkin, Phys C 333, 146 (2000)

    ADS  Google Scholar 

  17. J.L. Tallon, C. Bernhard, H. Shaked, R.L. Hitterman, J.D. Jorgensen, Phys. Rev. B 51, 12911 (1995)

    ADS  Google Scholar 

  18. P. Schleger, R.A. Hadfield, H. Casalta, N.H. Anderson, H.F. Poulsen, M. Von Zimmermann, J.R. Schneider, R. Liang, P. Dosanjh, W.N. Hardy, Phys. Rev. Lett. 74, 1446 (1995)

    ADS  Google Scholar 

  19. A. Gupta, A. Sedky, A.V. Narlikar, D.P. Singh, J. Mater. Sci. 37, 1557 (2002)

    ADS  Google Scholar 

  20. A. Sedky, B. Abu-Ziad, Phys C 470, 659 (2010)

    ADS  Google Scholar 

  21. B.D. Weaver, E.M. Jackson, G.P. Summers, E.A. Jackson, Phys. Rev. B 46, 1134 (1992)

    ADS  Google Scholar 

  22. A. Sedky, Phys B 410, 233 (2013)

    ADS  Google Scholar 

  23. P.C. Hohenberg, B.I. Halperin, Rev. Mod. Phys. 49, 435 (1977)

    ADS  Google Scholar 

  24. R.G. Buckley, J.L. Tallon, D.M. Pooke, M.R. Presland, Phys C 165, 391 (1990)

    ADS  Google Scholar 

  25. A. Das, R. Suryanarayanan, J. Phys. 15, 623 (1995)

    Google Scholar 

  26. L. Reggiani, R. Vaglio, A.A. Varlamo, Phys. Rev. B 44, 9541 (1991)

    ADS  Google Scholar 

  27. W.E. Lawrence, S. Doniach, in Proceedings of 12th Conference on Low-Temperature Physics (Tokyo, 1970), p. 361.

  28. A. Sedky, A. Salah, S.A. Amin, Asian J. Phys. Sci. Chem. 3(2), 1–15 (2017)

    Google Scholar 

  29. F. Ben Azzouz, M. Zouaoui, M. Annabi, M. Ben Salem, Phys. Stat. Sol. (c) 3(9), 3048 (2006)

    Google Scholar 

  30. C.J. Lobb, Phys. Rev. B 36, 3930 (1987)

    ADS  Google Scholar 

  31. W. Anderson, Z. Zou, Phys. Rev. Lett. 60, 132 (1988)

    ADS  Google Scholar 

  32. L.G. Aslamazov, A.I. Larkin, Phys. Lett. A 26, 238 (1968)

    ADS  Google Scholar 

  33. W.E. Lawrence, S. Doniach, in Proceedings of 12th International Conference on Low Temperature Physics Kyoto, ed. by E. Kanada (Keigaku, Tokyo, 1971), p. 361

  34. A.K. Gosh, S.K. Bandyopadhyay, A.N. Basu, J. Appl. Phys. 86, 3247 (1999)

    ADS  Google Scholar 

  35. A.K. Ghosh, S.K. Bandyopadhyay, P. Barat, P. Sen, A.N. Basu, Phys C 264, 255 (1996)

    ADS  Google Scholar 

  36. A.I. Abou-Aly, R. Awad, M. Kamal, M. Anas, J. Low Temp. Phys. 163, 184 (2011)

    ADS  Google Scholar 

  37. A. Sedky, J. Phys. Chem. Solids 70, 483 (2009)

    ADS  Google Scholar 

  38. P.C. Poole, A.H. Farach, J.R. Creswick, R. Prozorov, Superconductivity, 2nd edn. (Academic Press, San Diego, 2007)

    Google Scholar 

  39. A.I. Abou Aly, I.H. Ibrahim, R. Awad, A. El-Harizy, A. Khalaf, J. Supercond. Nov. Magn. 23(7), 1325 (2010)

    Google Scholar 

  40. A.I. Abou-Aly, R. Awad, I.H. Ibrahim, W. Abdeen, Solid State Commun. 140, 281 (2009)

    ADS  Google Scholar 

  41. A. Sedky, J. Magn. Mag. Mater. 277, 293 (2004)

    ADS  Google Scholar 

  42. Y. Petrovie, R. Fasano, M. Lortz, M. Dcrous, M. Potel, R. Cheriel, Phys C 460–462, 702 (2007)

    ADS  Google Scholar 

  43. J. Jaroszynski, S.C. Riggs, F. Hunte, A. Gurevich, D.C. Larbalestier, G.S. Boebinger, F.F. Balakirev, A. Migliori, Z.A. Ren, W. Lu, J. Yang, X.L. Shen, X.L. Dong, Z.X. Zhao, R. Jin, A.S. Sefat, M.A. McGuire, B.C. Sales, D.K. Christen, D. Mandrus, Phys. Rev. B 78, 064511 (2008)

    ADS  Google Scholar 

  44. M.O. Mun, S.I. Lee, W.C. Lee, Phys. Rev. B 56, 14668 (1997)

    ADS  Google Scholar 

  45. A. Sedky, E. Nazarova, K. Nenkov, K. Buchkov, J. Supercond. Nov. Magn. 30, 2751 (2017)

    Google Scholar 

  46. I. Pallecchi, C. Fanciulli, M. Tropeano, A. Palenzona, M. Ferretti, A. Malagoli, A. Martinelli, I. Sheikin, M. Putti, C. Ferdeghini, Phys. Rev. B 79, 104515 (2009)

    ADS  Google Scholar 

  47. A.L. Solov’ev, V.M. Dmitriev, Low Temp. Phys. 35, 169 (2009)

    ADS  Google Scholar 

  48. F. Vidal, J.A. Veira, J. Maza, F. Garcia-Alvarado, E. Moran, M.A. Alario, J. Phys. C 21, L9 (1988)

    Google Scholar 

  49. J.A. Veira, J.F. Maza, J. Vida, Phys. Lett. A 131, 310 (1988)

    ADS  Google Scholar 

  50. A. Sedky, M.I. Youssif, Braz. J. Phys. 46, 198 (2016)

    ADS  Google Scholar 

  51. S.R. Ghorbani, M. Homaei, Mod. Phys. Lett. B 25(23), 1915 (2011)

    ADS  Google Scholar 

  52. K. Nawazish Ali, H. Najmul, N. Sana, S. Babar, K. Sajid, A.A. Rizvi, J. Appl. Phys. 107, 083910 (2010)

    Google Scholar 

  53. A. Bianconi, A. Valletta, A. Perali, N.L. Saini, Phys C 296, 269 (1998)

    ADS  Google Scholar 

  54. A.K. Ghosh, A.N. Basu, Supercond. Sci. Technol. 11, 852 (1998)

    ADS  Google Scholar 

  55. A.V. Narlikar, A. Gupta, S.B. Samanta, C. Chen, Y. Hu, P. Wander, B.M. Wanklyn, J.W. Hodby, Philos. Mag. B 79, 717 (1999)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number R.G.P. 1/121/40.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sedky.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A.M., Sedky, A., Algarni, H. et al. Argon Annealing and Oxygen Purity Affect Structural and Critical Parameters of YBCO Copper Oxide System. J Low Temp Phys 197, 445–457 (2019). https://doi.org/10.1007/s10909-019-02234-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02234-2

Keywords

Navigation