Skip to main content
Log in

Dynamical BCS Theory of a Two-Dimensional Attractive Fermi Gas: Effective Interactions from Quantum Monte Carlo Calculations

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The primary work presented in this paper focuses on the calculation of density–density dynamical correlations in an attractive two-dimensional Fermi gas in several physically interesting regimes, including the strongly correlated BEC–BCS crossover regime. We use state-of-the-art dynamical BCS theory, and we address the possibility to renormalize the interaction strength, using unbiased Quantum Monte Carlo results as an asset to validate the predictions. We propose that a suitable interplay between dynamical BCS theory, which is computationally very cheap and yields results directly in real time domain, and Quantum Monte Carlo methods, which are exact but way more demanding and limited to imaginary time domain, can be a very promising idea to study dynamics in many-body systems. We illustrate the idea and provide quantitative results for a few values of the interaction strength in the cold gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 80, 1215 (2008)

    Article  ADS  Google Scholar 

  2. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  3. R. Onofrio, Physics Uspekhi 59, 1129 (2016). [Uspekhi Fizicheskikh Nauk 186 (2016) 1229], Phys. Usp. 59, 1129 (2016). arXiv:1711.00071 [cond-mat.quant-gas]

    Article  ADS  Google Scholar 

  4. A.V. Turlapov, M.Y. Kagan, J. Phys. Condens. Matter 29, 383004 (2017)

    Article  ADS  Google Scholar 

  5. E. Braaten, D. Kang, L. Platter, Phys. Rev. A 78, 053606 (2008)

    Article  ADS  Google Scholar 

  6. P.A. Lee, N. Nagaosa, X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006)

    Article  ADS  Google Scholar 

  7. X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  8. Y. Yu, A. Bulgac, Phys. Rev. Lett. 90, 161101 (2003)

    Article  ADS  Google Scholar 

  9. K. Martiyanov, V. Makhalov, A. Turlapov, Phys. Rev. Lett. 105, 030404 (2010)

    Article  ADS  Google Scholar 

  10. A. Galea, T. Zielinski, S. Gandolfi, A. Gezerlis, J. Low Temp. Phys. 189, 451 (2017)

    Article  ADS  Google Scholar 

  11. R. Combescot, X. Leyronas, M.Y. Kagan, Phys. Rev. A 73, 023618 (2006)

    Article  ADS  Google Scholar 

  12. S. Hoinka, M. Lingham, M. Delehaye, C.J. Vale, Phys. Rev. Lett. 109, 050403 (2012)

    Article  ADS  Google Scholar 

  13. H. Shi, S. Chiesa, S. Zhang, Phys. Rev. A 92, 033603 (2015)

    Article  ADS  Google Scholar 

  14. E. Vitali, H. Shi, M. Qin, S. Zhang, Phys. Rev. A 96, 061601 (2017)

    Article  ADS  Google Scholar 

  15. G. Bertaina, D. Galli, E. Vitali, Adv. Phys. X 2, 302 (2017)

    Google Scholar 

  16. E. Vitali, H. Shi, M. Qin, S. Zhang, Phys. Rev. B 94, 085140 (2016)

    Article  ADS  Google Scholar 

  17. M.Y. Kagan, R. Frésard, M. Capezzali, H. Beck, Phys. Rev. B 57, 5995 (1998)

    Article  ADS  Google Scholar 

  18. E. Vitali, H. Shi, M. Qin, S. Zhang, J. Low Temp. Phys. (2017). https://doi.org/10.1007/s10909-017-1805-z

    Article  Google Scholar 

  19. R. Combescot, M.Y. Kagan, S. Stringari, Phys. Rev. A 74, 042717 (2006)

    Article  ADS  Google Scholar 

  20. F. Werner, Y. Castin, Phys. Rev. A 86, 013626 (2012)

    Article  ADS  Google Scholar 

  21. E.J. Mueller, Rep. Prog. Phys. 80, 104401 (2017)

    Article  ADS  Google Scholar 

  22. B.C. Mulkerin, L. He, P. Dyke, C.J. Vale, X.-J. Liu, H. Hu, Phys. Rev. A 96, 053608 (2017)

    Article  ADS  Google Scholar 

  23. Q. Chen, J. Stajic, S. Tan, K. Levin, Phys. Rep. 412, 1 (2005)

    Article  ADS  Google Scholar 

  24. W. Hofstetter, J.I. Cirac, P. Zoller, E. Demler, M.D. Lukin, Phys. Rev. Lett. 89, 220407 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Quantum Monte Carlo computing was carried out at the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number ACI-1053575. One of us, E. V., would like to acknowledge useful discussions with Shiwei Zhang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ettore Vitali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitali, E., Gonzalez, J. Dynamical BCS Theory of a Two-Dimensional Attractive Fermi Gas: Effective Interactions from Quantum Monte Carlo Calculations. J Low Temp Phys 197, 389–401 (2019). https://doi.org/10.1007/s10909-019-02226-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02226-2

Keywords

Navigation