Skip to main content
Log in

Merging of Rotating Bose–Einstein Condensates

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Merging of isolated Bose–Einstein condensates (BECs) is an important topic due to its relevance to matter-wave interferometry and the Kibble–Zurek mechanism. Many past research focused on merging of BECs with uniform initial phases. In our recent brief report (Kanai et al. in Phys Rev A 97:013612, 2018), we showed that upon merging of rotating BECs with non-uniform initial phases, spiral-shaped dark solitons can emerge. These solitons facilitate angular momentum transfer and allow the merged condensate to rotate even in the absence of quantized vortices. More strikingly, the sharp endpoints of these spiral solitons can induce rotational motion in the BECs like vortices but with effectively a fraction of a quantized circulation. This paper reports our systematic study on the merging dynamics of rotating BECs. We discuss how the relative winding number of the rotating BECs and the potential barrier that initially separates the BECs may affect the profile and dynamics of the spiral solitons. The number of spiral solitons created in the BECs is observed to always match exactly the relative winding number of the two BECs. The underlying mechanism for which the solitons can break up to form sharp endpoints with peculiar physical properties and why the number of solitons matches the relative winding number is identified and explained. These results improve our understanding of soliton dynamics, which may allow better manipulation of these non-topological phase defects when they are involved in various quantum transport processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.R. Andrews, C.G. Townsend, H.-J. Miesner, D.S. Durfa, D.M. Kurn, W. Ketterle, Science 275, 637 (1997)

    Article  Google Scholar 

  2. Y. Shin, M. Saba, T.A. Pasquini, W. Ketterle, D.E. Pritchard, A.E. Leanhardt, Phys. Rev. Lett. 92, 050405 (2004)

    Article  ADS  Google Scholar 

  3. Z. Hadzibabic, S. Stock, B. Battelier, V. Bretin, J. Dalibard, Phys. Rev. Lett. 93, 180403 (2004)

    Article  ADS  Google Scholar 

  4. Y. Shin, C. Sanner, G.-B. Jo, T.A. Pasquini, M. Saba, W. Ketterle, D.E. Pritchard, M. Vengalattore, M. Prentiss, Phys. Rev. A 72, 021604 (2005)

    Article  ADS  Google Scholar 

  5. W.M. Liu, B. Wu, Q. Niu, Phys. Rev. Lett. 84, 2294 (2000)

    Article  ADS  Google Scholar 

  6. T. Yang, B. Xiong, K.A. Benedict, Phys. Rev. A 87, 023603 (2013)

    Article  ADS  Google Scholar 

  7. S. Stock, Z. Hadzibabic, B. Battelier, M. Cheneau, J. Dalibard, Phys. Rev. Lett. 95, 190403 (2005)

    Article  ADS  Google Scholar 

  8. D.R. Scherer, C.N. Weiler, T.W. Neely, B.P. Anderson, Phys. Rev. Lett. 98, 110402 (2007)

    Article  ADS  Google Scholar 

  9. B. Xiong, T. Yang, K.A. Benedict, Phys. Rev. A 88, 043602 (2013)

    Article  ADS  Google Scholar 

  10. S.J. Yang, Q.S. Wu, S.N. Zhang, S. Feng, W. Guo, Y.C. Wen, Y. Yu, Phys. Rev. A 76, 063606 (2007)

    Article  ADS  Google Scholar 

  11. S.J. Yang, Q.S. Wu, S. Feng, Y.C. Wen, Y. Yu, Phys. Rev. A 77, 035602 (2008)

    Article  ADS  Google Scholar 

  12. L.A. Toikka, O. Kärki, K.-A. Suominen, J. Phys. B: At. Mol. Opt. Phys. 47, 021002 (2014)

    Article  ADS  Google Scholar 

  13. C.N. Weiler, T.W. Neely, D.R. Scherer, A.S. Bradley, M.J. Davis, B.P. Anderson, Nature 455, 948–951 (2008)

    Article  ADS  Google Scholar 

  14. R. Carretero-González, B.P. Anderson, P.G. Kevrekidis, D.J. Frantzeskakis, C.N. Weiler, Phys. Rev. A 77, 033625 (2008)

    Article  ADS  Google Scholar 

  15. L. Corman, L. Chomaz, T. Bienaimé, R. Desbuquois, C. Weitenberg, S. Nascimbène, J. Dalibard, J. Beugnon, Phys. Rev. Lett. 113, 135302 (2014)

    Article  ADS  Google Scholar 

  16. G. Lamporesi, S. Donadello, S. Serafini, F. Dalfovo, G. Ferrari, Nat. Phys. 9, 656–C660 (2013)

    Article  Google Scholar 

  17. W.H. Zurek, Phys. Rep. 276, 177 (1996)

    Article  ADS  Google Scholar 

  18. T.W.B. Kibble, Phys. Today 60, 47 (2007)

    Article  Google Scholar 

  19. T. Kanai, W. Guo, M. Tsubota, Phys. Rev. A 97, 013612 (2018)

    Article  ADS  Google Scholar 

  20. L.P. Pitaevskii, S. Stringari, Bose–Einstein Condensation (Oxford University Press, Oxford, 2003)

    MATH  Google Scholar 

  21. W.J. Kwon, J.H. Kim, S.W. Seo, Y. Shin, Phys. Rev. Lett. 117, 245301 (2016)

    Article  ADS  Google Scholar 

  22. F. Jendrzejewski, S. Eckel, N. Murray, C. Lanier, M. Edwards, C.J. Lobb, G.K. Campbell, Phys. Rev. Lett. 113, 045305 (2014)

    Article  ADS  Google Scholar 

  23. T.C. Killian, D.G. Fried, L. Willmann, D. Landhuis, S.C. Moss, T.J. Greytak, D. Kleppner, Phys. Rev. Lett. 81, 3807 (1998)

    Article  ADS  Google Scholar 

  24. A.L. Gaunt, T.F. Schmidutz, I. Gotlibovych, R.P. Smith, Z. Hadzibabic, Phys. Rev. Lett. 110, 200406 (2013)

    Article  ADS  Google Scholar 

  25. M.L. Chiofalo, S. Succi, M.P. Tosi, Phys. Rev. E 62, 7438 (2000)

    Article  ADS  Google Scholar 

  26. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in C. The Art of Scientific Computing (Cambridge University Press, Cambridge, 1992)

    MATH  Google Scholar 

  27. S. Eckel, F. Jendrzejewski, A. Kumar, C.J. Lobb, G.K. Campbell, Phys. Rev. X(4), 031052 (2014)

    Article  Google Scholar 

  28. A.D. Jackson, G.M. Kavoulakis, C.J. Pethick, Phys. Rev. A 58, 2417 (1998)

    Article  ADS  Google Scholar 

  29. A.V. Mamaev, M. Saffman, A.A. Zozulya, Phys. Rev. Lett. 76, 2262 (1996)

    Article  ADS  Google Scholar 

  30. G. Theocharis, D.J. Frantzeskakis, P.G. Kevrekidis, B.A. Malomed, Y.S. Kivshar, Phys. Rev. Lett. 90, 120403 (2003)

    Article  ADS  Google Scholar 

  31. M. Ma, R. Carretero-González, P.G. Kevrekidis, D.J. Frantzeskakis, B.A. Malomed, Phys. Rev. A 82, 023621 (2010)

    Article  ADS  Google Scholar 

  32. I. Shomroni, E. Lahoud, S. Levy, J. Steinhauer, Nat. Phys. 5, 193–197 (2009)

    Article  Google Scholar 

  33. H.L.F. von Helmholtz, Monatsberichte der königl (Akademie Wissenschaften, Berlin, 1868)

    Google Scholar 

  34. Lord Kelvin (Sir W. Thomson), Mathematical and Physical Papers, Vol. 4: Hydrodynamics and General Dynamics. (Cambridge University Press, Cambridge, 1910)

  35. R. Blaauwgeers, V.B. Eltsov, G. Eska, A.P. Finne, R.P. Haley, M. Krusius, J.J. Ruohio, L. Skrbek, G.E. Volovik, Phys. Rev. Lett. 89, 155301 (2002)

    Article  ADS  Google Scholar 

  36. G.E. Volovik, JETP Lett. 75, 491C495 (2002)

    Google Scholar 

  37. H. Takeuchi, N. Suzuki, K. Kasamatsu, H. Saito, M. Tsubota, Phys. Rev. B 81, 094517 (2010)

    Article  ADS  Google Scholar 

  38. E. Lundh, J.-P. Martikainen, Phys. Rev. A 85, 023628 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

W. G. acknowledges the support by the National Science Foundation under Grant No. DMR-1507386 and the support from the National High Magnetic Field Laboratory, which is supported by NSF Grant No. DMR-1644779 and the state of Florida. M. T. would like to acknowledge the support by the Japan Society for the Promotion of Science (JSPS) KAKENHI under Grant Nos. JP17K05548 and JP16H00807.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Kanai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanai, T., Guo, W. & Tsubota, M. Merging of Rotating Bose–Einstein Condensates. J Low Temp Phys 195, 37–50 (2019). https://doi.org/10.1007/s10909-018-2110-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-2110-1

Keywords

Navigation