Journal of Low Temperature Physics

, Volume 196, Issue 1–2, pp 133–139 | Cite as

Collective Excitations in Bose–Fermi Mixtures

  • Yoji AsanoEmail author
  • Masato Narushima
  • Shohei Watabe
  • Tetsuro Nikuni


We investigate collective excitations of density fluctuations and a dynamic density structure factor in a mixture of Bose and Fermi gases in a normal phase. With decreasing temperature, we find that the frequency of the collective excitation deviates from that of the hydrodynamic sound mode. Even at a temperature much lower than the Fermi temperature, the collective mode frequency does not reach the collisionless limit analogous to zero sound in a Fermi gas, because of collisions between bosons and fermions.


Bose–Fermi mixture Collective excitation Normal state First sound Zero sound Dynamic structure factor 



We are grateful to Y. Iijima for discussion in the early stage of this work. S.W. is supported by JSPS KAKENHI Grant Nos. (JP16K17774, JP18K03499), and T.N. is supported by JSPS KAKENHI Grant No. (JP16K05504).


  1. 1.
    R. Onofrio, Physics of our days: cooling and thermometry of atomic Fermi gases. Phys. Usp. 59(11), 1129 (2016)CrossRefGoogle Scholar
  2. 2.
    R. Roy, R. Shrestha, A. Green, S. Gupta, M. Li, S. Kotochigova, A. Petrov, C.H. Yuen, Photoassociative production of ultracold heteronuclear \({\rm YbLi}^{*}\) molecules. Phys. Rev. A 94, 033413 (2016)CrossRefGoogle Scholar
  3. 3.
    F. Scazza, G. Valtolina, P. Massignan, A. Recati, A. Amico, A. Burchianti, C. Fort, M. Inguscio, M. Zaccanti, G. Roati, Repulsive Fermi polarons in a resonant mixture of ultracold \(^{6}{\rm Li}\) atoms. Phys. Rev. Lett. 118, 083602 (2017)CrossRefGoogle Scholar
  4. 4.
    B.J. DeSalvo, K. Patel, J. Johansen, C. Chin, Observation of a degenerate Fermi gas trapped by a Bose–Einstein condensate. Phys. Rev. Lett. 119, 233401 (2017)CrossRefGoogle Scholar
  5. 5.
    X.C. Yao, H.Z. Chen, Y.P. Wu, X.P. Liu, X.Q. Wang, X. Jiang, Y. Deng, Y.A. Chen, J.W. Pan, Observation of coupled vortex lattices in a mass-imbalance Bose and Fermi superfluid mixture. Phys. Rev. Lett. 117, 145301 (2016)CrossRefGoogle Scholar
  6. 6.
    R. Roy, A. Green, R. Bowler, S. Gupta, Two-element mixture of Bose and Fermi superfluids. Phys. Rev. Lett. 118, 055301 (2017)CrossRefGoogle Scholar
  7. 7.
    C.J.E. Straatsma, V.E. Colussi, M.J. Davis, D.S. Lobser, M.J. Holland, D.Z. Anderson, H.J. Lewandowski, E.A. Cornell, Collapse and revival of the monopole mode of a degenerate Bose gas in an isotropic harmonic trap. Phys. Rev. A 94, 043640 (2016)CrossRefGoogle Scholar
  8. 8.
    E. Arahata, T. Nikuni, Propagation of first and second sound in a highly elongated trapped Bose-condensed gas at finite temperatures. Phys. Rev. A 87, 033610 (2013)CrossRefGoogle Scholar
  9. 9.
    S. Watabe, A. Osawa, T. Nikuni, Zero and first sound in normal Fermi systems. J. Low Temp. Phys. 158(5), 773 (2010)CrossRefGoogle Scholar
  10. 10.
    M. Narushima, S. Watabe, K. Nikuni, Density and spin modes in imbalanced normal Fermi gases from collisionless to hydrodynamic regime. J. Phys. B At. Mol. Opt. Phys. 51(5), 055202 (2018)CrossRefGoogle Scholar
  11. 11.
    L.A. Sidorenkov, M.K. Tey, R. Grimm, Y.H. Hou, L. Pitaevskii, S. Stringari, Second sound and the superfluid fraction in a Fermi gas with resonant interactions. Nature 498(7452), 78 (2013)CrossRefGoogle Scholar
  12. 12.
    H. Hu, P. Dyke, C.J. Vale, X.J. Liu, First and second sound of a unitary Fermi gas in highly oblate harmonic traps. New J. Phys. 16(8), 083023 (2014)CrossRefGoogle Scholar
  13. 13.
    A.A. Abrikosov, I.M. Khalatnikov, The theory of a Fermi liquid (the properties of liquid 3 He at low temperatures). Rep. Prog. Phys. 22(1), 329 (1959)CrossRefzbMATHGoogle Scholar
  14. 14.
    B.B. Hamel, Kinetic model for binary gas mixtures. Phys. Fluids 8(3), 418 (1965)CrossRefGoogle Scholar
  15. 15.
    P. Capuzzi, P. Vignolo, F. Toschi, S. Succi, M.P. Tosi, Effects of collisions against thermal impurities in the dynamics of a trapped fermion gas. Phys. Rev. A 70, 043623 (2004)CrossRefGoogle Scholar
  16. 16.
    L. Kadanoff, G. Baym, Quantum Statistical Mechanics (W.A. Benjamin Inc., New York, 1962)zbMATHGoogle Scholar
  17. 17.
    C.J. Pethick, H. Smith, Bose–Einstein Condensation in Dilute Gases (Cambridge university press, 2002)Google Scholar
  18. 18.
    J. Goldwin, S. Inouye, M.L. Olsen, D.S. Jin, Cross-dimensional relaxation in Bose–Fermi mixtures. Phys. Rev. A 71, 043408 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsTokyo University of ScienceTokyoJapan

Personalised recommendations