Multi-body Correlations in SU(3) Fermi Gases

Abstract

We investigate strong-coupling effects in a three-component atomic Fermi gas. It is a promising candidate for simulating quantum chromodynamics, and furthermore, the emergence of various phenomena such as color superfluidity and Efimov effect is anticipated in this system. In this paper, we study the effects of two-body and three-body correlations by means of the many-body T-matrix approximation as well as the Skorniakov–Ter-Martirosian equation with medium corrections. We investigate the effects of finite temperature and chemical potential on the trimer binding energy at the superfluid critical point of the unitarity limit.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    ADS  Article  Google Scholar 

  2. 2.

    S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 80, 1215 (2008)

    ADS  Article  Google Scholar 

  3. 3.

    W. Hofstetter, J.I. Cirac, P. Zoller, E. Demler, M.D. Lukin, Phys. Rev. Lett. 89, 220407 (2002)

    ADS  Article  Google Scholar 

  4. 4.

    J.K. Chin, D.E. Miller, Y. Liu, C. Stan, W. Setiawan, C. Sanner, K. Xu, W. Ketterle, Nature 443, 961 (2006)

    ADS  Article  Google Scholar 

  5. 5.

    C. Gross, I. Bloch, Science 357, 995 (2017)

    ADS  Article  Google Scholar 

  6. 6.

    A. Gezerlis, J. Carlson, Phys. Rev. C 70, 032801(R) (2008)

    ADS  Article  Google Scholar 

  7. 7.

    N. Navon, S. Nascimbéne, F. Chevy, C. Salomon, Science 328, 729 (2010)

    ADS  Article  Google Scholar 

  8. 8.

    M. Horikoshi, M. Koashi, H. Tajima, Y. Ohashi, M. Kuwata-Gonokami, Phys. Rev. X 7, 041004 (2017)

    Google Scholar 

  9. 9.

    H. Tajima, P. van Wyk, R. Hanai, D. Kagamihara, D. Inotani, M. Horikoshi, Y. Ohashi, Phys. Rev. A 95, 043625 (2017)

    ADS  Article  Google Scholar 

  10. 10.

    P. van Wyk, H. Tajima, D. Inotani, A. Ohnishi, Y. Ohashi, Phys. Rev. A 97, 013601 (2018)

    ADS  Article  Google Scholar 

  11. 11.

    K. Fukushima, T. Hatsuda, Rep. Prog. Phys. 74, 014001 (2011)

    ADS  Article  Google Scholar 

  12. 12.

    L. He, M. Jin, P. Zhuang, Phys. Rev. A 74, 033604 (2006)

    ADS  Article  Google Scholar 

  13. 13.

    T. Paananen, J.-P. Martikainen, P. Törmä, Phys. Rev. A 73, 053606 (2006)

    ADS  Article  Google Scholar 

  14. 14.

    T. Ozawa, G. Baym, Phys. Rev. A 82, 063615 (2010)

    ADS  Article  Google Scholar 

  15. 15.

    S. Floerchinger, R. Schmidt, S. Moroz, C. Wetterich, Phys. Rev. A 79, 013603 (2009)

    ADS  Article  Google Scholar 

  16. 16.

    Y. Nishida, Phys. Rev. Lett. 109, 240401 (2012)

    ADS  Article  Google Scholar 

  17. 17.

    T. Kirk, M.M. Parish, Phys. Rev. A 96, 053614 (2017)

    ADS  Article  Google Scholar 

  18. 18.

    C.A. Regal, M. Greiner, D.S. Jin, Phys. Rev. Lett. 92, 040403 (2004)

    ADS  Article  Google Scholar 

  19. 19.

    M.W. Zwierlein, C.A. Stan, C.H. Schunck, S.M.F. Raupach, A.J. Kerman, W. Ketterle, Phys. Rev. Lett. 92, 120403 (2004)

    ADS  Article  Google Scholar 

  20. 20.

    T.B. Ottenstein, T. Lompe, M. Kohnen, A.N. Wenz, S. Jochim, Phys. Rev. Lett. 101, 203202 (2008)

    ADS  Article  Google Scholar 

  21. 21.

    K.M. O’Hara, New J. Phys. 13, 065011 (2011)

    Article  Google Scholar 

  22. 22.

    V. Efimov, Yad. Fiz. 12, 1080 (1970)

    Google Scholar 

  23. 23.

    V. Efimov, Sov. J. Nucl. Phys. 12, 589 (1971)

    Google Scholar 

  24. 24.

    P. Naidon, M. Ueda, Phys. Rev. Lett. 103, 073203 (2009)

    ADS  Article  Google Scholar 

  25. 25.

    P. Naidon, M. Ueda, C. R. Phys. 12, 13 (2011)

    ADS  Article  Google Scholar 

  26. 26.

    P. Naidon, S. Endo, Rep. Prog. Phys. 80, 056001 (2017)

    ADS  Article  Google Scholar 

  27. 27.

    J.R. Williams, E.L. Hazlett, J.H. Huckans, R.W. Stities, Y. Zhang, K. O’Hara, Phys. Rev. Lett. 103, 130404 (2009)

    ADS  Article  Google Scholar 

  28. 28.

    A.N. Wenz, T. Lompe, T.B. Ottenstein, F. Serwane, G. Zürn, S. Jochim, Phys. Rev. A 80, 040702(R) (2009)

    ADS  Article  Google Scholar 

  29. 29.

    S. Nakajima, M. Horikoshi, T. Mukaiyama, P. Naidon, M. Ueda, Phys. Rev. Lett. 106, 143201 (2011)

    ADS  Article  Google Scholar 

  30. 30.

    A. Perali, P. Pieri, G.C. Strinati, C. Castellani, Phys. Rev. B 66, 024510 (2002)

    ADS  Article  Google Scholar 

  31. 31.

    S. Tsuchiya, R. Watanabe, Y. Ohashi, Phys. Rev. A 80, 033613 (2009)

    ADS  Article  Google Scholar 

  32. 32.

    H. Tajima, Phys. Rev. A 97, 043613 (2018)

    ADS  Article  Google Scholar 

  33. 33.

    G. Skorniakov, K. Ter-Martirosian, Sov. Phys. JETP 4, 648 (1957)

    Google Scholar 

  34. 34.

    P. Niemann, H.-W. Hammer, Phys. Rev. A 86, 013628 (2012)

    ADS  Article  Google Scholar 

  35. 35.

    J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    ADS  MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

We thank Y. Nishida, T. Hatsuda, and G. Baym for useful discussions. H.T. was supported by a Grant-in-Aid for JSPS fellows (No. 17J03975). P.N. was supported by RIKEN Incentive Research Project. This work was partially supported by iTHEMS Program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Tajima.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tajima, H., Naidon, P. Multi-body Correlations in SU(3) Fermi Gases. J Low Temp Phys 196, 163–169 (2019). https://doi.org/10.1007/s10909-018-2104-z

Download citation

Keywords

  • Ultracold Fermi gas
  • Superfluidity
  • Efimov effect